Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWurtman, Richard-
dc.contributor.authorSakamoto, Joshimasa-
dc.date.accessioned2021-11-09T06:23:11Z-
dc.date.available2021-11-09T06:23:11Z-
dc.date.issued2008-01-
dc.identifier.citationCansev, M. vd. (2008). ''Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses''. Alzheimers & Dementia, 4(1), Supplement 1, S153-S168.en_US
dc.identifier.issn1552-5260-
dc.identifier.issn1552-5279-
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S1552526007006280-
dc.identifier.urihttps://doi.org/10.1016/j.jalz.2007.10.005-
dc.identifier.urihttp://hdl.handle.net/11452/22588-
dc.description.abstractAlthough cognitive performance in humans and experimental animals can be improved by administering omega-3 fatty acid docosahexaenoic acid (DHA), the neurochemical mechanisms underlying this effect remain uncertain. In general, nutrients or drugs that modify brain function or behavior do so by affecting synaptic transmission, usually by changing the quantities of particular neurotransmitters present within synaptic clefts or by acting directly on neurotransmitter receptors or signal-transduction molecules. We find that DHA also affects synaptic transmission in mammalian brain. Brain cells of gerbils or rats receiving this fatty acid manifest increased levels of phosphatides and of specific presynaptic or postsynaptic proteins. They also exhibit increased numbers of dendritic spines on postsynaptic neurons. These actions are markedly enhanced in animals that have also received the other two circulating precursors for phosphatidylcholinc, uridine (which gives rise to brain uridine diphosphate and cytidine triphosphate) and choline (which gives rise to phosphocholine). The actions of DHA acre reproduced by eicosapentaenoic acid, another omega-3 compound, but not by omega-6 fatty acid arachidonic acid. Administration of circulating phosphatide precursors can also increase neurotransmitter release (acetylcholine, dopamine) and affect animal behavior. Conceivably, this treatment might have use in patients with the synaptic loss that characterizes Alzheimer's disease or other neurodegenerative diseases or occurs after stroke or brain injury.en_US
dc.description.sponsorshipCenter for Brain Sciences and Metabolism Charitable Trusten_US
dc.description.sponsorshipUnited States Department of Health & Human Services National Institutes of Health (NIH) (R01 MH028783)en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPhosphatideen_US
dc.subjectUridineen_US
dc.subjectDocosahexaenoic aciden_US
dc.subjectPrecursoren_US
dc.subjectSynaptic membraneen_US
dc.subjectDendritic spineen_US
dc.subjectAlzheimer's diseaseen_US
dc.subjectPolyunsaturated fatty-acidsen_US
dc.subjectCtp-phosphocholine cytidylyltransferaseen_US
dc.subjectDependent nucleoside transporten_US
dc.subjectPhospholipase-c treatmenten_US
dc.subjectLong-term potentiationen_US
dc.subjectRat-liver microsomesen_US
dc.subjectHamster ovary cellsen_US
dc.subjectCdp-choline levelsen_US
dc.subjectDocosahexaenoic aciden_US
dc.subjectDendritic spinesen_US
dc.subjectNeurosciences & neurologyen_US
dc.subject.meshAdministrationen_US
dc.subject.meshOralen_US
dc.subject.meshAnimalsen_US
dc.subject.meshBrainen_US
dc.subject.meshBrain diseasesen_US
dc.subject.meshCell membraneen_US
dc.subject.meshCholineen_US
dc.subject.meshDocosahexaenoic acidsen_US
dc.subject.meshHumansen_US
dc.subject.meshMembrane lipidsen_US
dc.subject.meshPhospholipidsen_US
dc.subject.meshProdrugsen_US
dc.subject.meshSynapsesen_US
dc.subject.meshSynaptic transmissionen_US
dc.subject.meshUridineen_US
dc.titleOral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapsesen_US
dc.typeArticleen_US
dc.identifier.wos000252699700027tr_TR
dc.identifier.scopus2-s2.0-38049116118tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Tıp Fakültesi/Farmakoloji ve Klinik Farmakoloji Anabilim Dalı.tr_TR
dc.identifier.startpage153tr_TR
dc.identifier.endpage168tr_TR
dc.identifier.volume4tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalAlzheimers & Dementiaen_US
dc.contributor.buuauthorCansev, Mehmet-
dc.contributor.buuauthorUlus, İsmail Hakkı-
dc.contributor.researcheridD-5340-2015tr_TR
dc.contributor.researcheridM-9071-2019tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.identifier.pubmed18631994tr_TR
dc.subject.wosClinical neurologyen_US
dc.indexed.wosSCIEen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubmeden_US
dc.contributor.scopusid8872816100tr_TR
dc.contributor.scopusid7004271086tr_TR
dc.subject.scopusCholine Phosphate Cytidylyltransferase; Phosphatidylcholines; Citicolineen_US
dc.subject.emtreeAcetylcholineen_US
dc.subject.emtreeArachidonic aciden_US
dc.subject.emtreeBeta tubulinen_US
dc.subject.emtreeCholineen_US
dc.subject.emtreeCholine kinaseen_US
dc.subject.emtreeCholine phosphate cytidylyltransferaseen_US
dc.subject.emtreeCholinephosphotransferaseen_US
dc.subject.emtreeCytidine diphosphateen_US
dc.subject.emtreeCytidine triphosphateen_US
dc.subject.emtreeDocosahexaenoic aciden_US
dc.subject.emtreeDopamineen_US
dc.subject.emtreeGlutamate receptor 1en_US
dc.subject.emtreeIcosapentaenoic aciden_US
dc.subject.emtreeNeurofilament proteinen_US
dc.subject.emtreeNeurotransmitteren_US
dc.subject.emtreeNeurotransmitter receptoren_US
dc.subject.emtreeOmega 3 fatty aciden_US
dc.subject.emtreePhospholipiden_US
dc.subject.emtreePostsynaptic density protein 95en_US
dc.subject.emtreeSynapsin Ien_US
dc.subject.emtreeSyntaxinen_US
dc.subject.emtreeSyntaxin 3en_US
dc.subject.emtreeUnclassified drugen_US
dc.subject.emtreeUridineen_US
dc.subject.emtreeUridine phosphateen_US
dc.subject.emtreeAcetylcholine releaseen_US
dc.subject.emtreeAlzheimer diseaseen_US
dc.subject.emtreeAnimal behavioren_US
dc.subject.emtreeBehavior modificationen_US
dc.subject.emtreeBrain cellen_US
dc.subject.emtreeBrain functionen_US
dc.subject.emtreeBrain injuryen_US
dc.subject.emtreeDegenerative diseaseen_US
dc.subject.emtreeDendritic spineen_US
dc.subject.emtreeDiet supplementationen_US
dc.subject.emtreeDopamine releaseen_US
dc.subject.emtreeDrug bioavailabilityen_US
dc.subject.emtreeDrug dose comparisonen_US
dc.subject.emtreeDrug metabolismen_US
dc.subject.emtreeDrug uptakeen_US
dc.subject.emtreeEditorialen_US
dc.subject.emtreeGerbilen_US
dc.subject.emtreeGumanen_US
dc.subject.emtreeMammal cellen_US
dc.subject.emtreeNerve cell plasticityen_US
dc.subject.emtreeNeurochemistryen_US
dc.subject.emtreeNeurotransmitter releaseen_US
dc.subject.emtreeNonhumanen_US
dc.subject.emtreePhospholipid synthesisen_US
dc.subject.emtreePriority journalen_US
dc.subject.emtreeSignal transductionen_US
dc.subject.emtreeStrokeen_US
dc.subject.emtreeSynapseen_US
dc.subject.emtreeSynaptic transmissionen_US
dc.subject.emtreeSynaptogenesisen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cansev_vd_2008.pdf1.01 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons