Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22697
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-11-18T06:02:15Z-
dc.date.available2021-11-18T06:02:15Z-
dc.date.issued2006-
dc.identifier.citationÖzmutlu, H. C. vd. (2006). ''Automatic new topic identification in search engine transaction logs''. Internet Research, 16(3), 323-338.en_US
dc.identifier.issn1066-2243-
dc.identifier.urihttps://doi.org/10.1108/10662240610673727-
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/10662240610673727/full/html-
dc.identifier.urihttp://hdl.handle.net/11452/22697-
dc.description.abstractPurpose - Content analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms of search engines, which can offer custom-tailored services to the web user. Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. The purpose of this study is to address these issues. Design/methodology/approach - This study applies genetic algorithms and Dempster-Shafer theory, proposed by He et al., to automatically identify topic changes in a user session by using statistical characteristics of queries, such as time intervals and query reformulation patterns. A sample data log from the Norwegian search engine FAST (currently owned by overture) is selected to apply Dempster-Shafer theory and genetic algorithms for identifying topic changes in the data log. Findings - As a result, 97.7 percent of topic shifts and 87.2 percent of topic continuations were estimated correctly. The findings are consistent with the previous application of the Dempster-Shafer theory and genetic algorithms on a different search engine data log. This finding could be implied as an indication that content-ignorant topic identification, using query patterns and time intervals, is a promising line of research. Originality/value - Studies an important dimension of user behavior in information retrieval.en_US
dc.language.isoenen_US
dc.publisherEmeralden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBusiness & economicsen_US
dc.subjectComputer scienceen_US
dc.subjectTelecommunicationsen_US
dc.subjectSearch enginesen_US
dc.subjectInformation retrievalen_US
dc.subjectIdentificationen_US
dc.subjectCluster analysisen_US
dc.subjectLifeen_US
dc.subjectUsersen_US
dc.subjectContexten_US
dc.subjectWeben_US
dc.subjectInformation-seekingen_US
dc.titleAutomatic new topic identification in search engine transaction logsen_US
dc.typeArticleen_US
dc.identifier.wos000241266700007tr_TR
dc.identifier.scopus2-s2.0-33745449182tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0001-8054-5606tr_TR
dc.identifier.startpage323tr_TR
dc.identifier.endpage338tr_TR
dc.identifier.volume16tr_TR
dc.identifier.issue3tr_TR
dc.relation.journalInternet Researchen_US
dc.contributor.buuauthorÖzmutlu, H. Cenk-
dc.contributor.buuauthorÇavdur, Fatih-
dc.contributor.buuauthorÖzmutlu, Seda-
dc.contributor.researcheridAAH-4480-2021tr_TR
dc.contributor.researcheridAAG-9471-2021tr_TR
dc.contributor.researcheridABH-5209-2020tr_TR
dc.subject.wosBusinessen_US
dc.subject.wosComputer science, information systemsen_US
dc.subject.wosTelecommunicationsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3 (Computer science, information systems)en_US
dc.wos.quartileQ3 (Telecommunications)en_US
dc.contributor.scopusid6603061328tr_TR
dc.contributor.scopusid8419687000tr_TR
dc.contributor.scopusid6603660605tr_TR
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Librariesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.