Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22837
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-11-29T06:35:02Z-
dc.date.available2021-11-29T06:35:02Z-
dc.date.issued2006-08-
dc.identifier.citationKüçük, İ. ve Derebaşı, N. (2006). ''Prediction of power losses in transformer cores using feed forward neural network and genetic algorithm''. Measurement: Journal of the International Measurement Confederation, 39(7), 605-611.tr_TR
dc.identifier.issn0263-2241-
dc.identifier.urihttps://doi.org/10.1016/j.measurement.2006.02.001-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0263224106000212-
dc.identifier.urihttp://hdl.handle.net/11452/22837-
dc.description.abstractA mathematical model for core losses was improved for frequency and geometrical effects using experimental data obtained from toroidal wound cores. The improved mathematical model was applied to the other soft magnetic materials and optimizes its parameters with the aim of neural networks. A 6-neuron input layer, 9-neuron output layer model with two hidden layers were developed. While the input neurons were geometrical parameters, magnetising frequency, magnetic induction and resistivity of the soft magnetic materials, output neurons were correlation coefficients and the power loss. The network has been trained by the genetic algorithm. The linear correlation coefficient was found to be 99%.tr_TR
dc.language.isoentr_TR
dc.publisherElseviertr_TR
dc.rightsinfo:eu-repo/semantics/closedAccesstr_TR
dc.subjectEngineeringtr_TR
dc.subjectInstruments & instrumentationtr_TR
dc.subjectToroidal magnetic corestr_TR
dc.subjectPower losstr_TR
dc.subjectGenetic algorithmtr_TR
dc.subjectArtificial neural networktr_TR
dc.subjectOptimizationtr_TR
dc.subjectNeural networkstr_TR
dc.subjectMathematical modelstr_TR
dc.subjectMagnetizationtr_TR
dc.subjectGenetic algorithmstr_TR
dc.subjectComputational geometrytr_TR
dc.subjectToroidal magnetic corestr_TR
dc.subjectPower losstr_TR
dc.subjectGeometrical effectstr_TR
dc.subjectElectric transformerstr_TR
dc.subjectFrequencytr_TR
dc.subjectMagnetic-propertiestr_TR
dc.subjectToroidal corestr_TR
dc.titlePrediction of power losses in transformer cores using feed forward neural network and genetic algorithmtr_TR
dc.typeArticletr_TR
dc.identifier.wos000239124600004tr_TR
dc.identifier.scopus2-s2.0-33745210992tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.tr_TR
dc.contributor.orcid0000-0003-2546-0022tr_TR
dc.identifier.startpage605tr_TR
dc.identifier.endpage611tr_TR
dc.identifier.volume39tr_TR
dc.identifier.issue7tr_TR
dc.relation.journalMeasurement: Journal of the International Measurement Confederationtr_TR
dc.contributor.buuauthorKüçük, İlker-
dc.contributor.buuauthorDerebaşı, Naim-
dc.contributor.researcheridAAI-2254-2021tr_TR
dc.subject.wosEngineering, multidisciplinarytr_TR
dc.subject.wosInstruments & instrumentationtr_TR
dc.indexed.wosSCIEtr_TR
dc.indexed.scopusScopustr_TR
dc.wos.quartileQ3tr_TR
dc.contributor.scopusid6602910810tr_TR
dc.contributor.scopusid11540936300tr_TR
dc.subject.scopusSilicon Steel; Soft Magnetic Materials; Induction Motorstr_TR
Appears in Collections:Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.