Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22873
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLomov, Stepan Vladimirovitch-
dc.contributor.authorBogdanovich, Alexander E.-
dc.contributor.authorVerpoest, Ignaas-
dc.date.accessioned2021-11-30T07:39:52Z-
dc.date.available2021-11-30T07:39:52Z-
dc.date.issued2011-11-14-
dc.identifier.citationKarahan, M. vd. (2011). ''Fatigue tensile behavior of carbon/epoxy composite reinforced with non-crimp 3D orthogonal woven fabric''. Composites Science and Technology, 71(16), 1961-1972.tr_TR
dc.identifier.issn0266-3538-
dc.identifier.issn1879-1050-
dc.identifier.urihttps://doi.org/10.1016/j.compscitech.2011.09.015-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0266353811003423-
dc.identifier.urihttp://hdl.handle.net/11452/22873-
dc.description.abstractAn experimental study of the in-plane tension-tension fatigue behavior of the carbon fiber/epoxy matrix composite reinforced with non-crimp 3D orthogonal woven fabric is presented. The results include pre-fatigue quasi-static test data, fatigue life diagrams, fatigue damage progression, and post-fatigue quasi-static test data for the warp- and fill-directional loading cases. It is revealed that the maximum cycle stress corresponding to at least 3 million cycles of fatigue life without failure, is in the range of 412-450 MPa for both loading directions. This stress range is well above the static damage initiation threshold and significantly above the first static damage threshold (determined by the onset of low energy acoustic emission). The second static damage threshold, determined by the onset of high energy acoustic emission and related to the appearance of local debonds and intensive transverse matrix cracking falls within this range. The established correlation between a 3000,000 cycle fatigue stress limit on one side and the second static damage threshold stress on the other is of a high practical importance, because it will significantly reduce the amount of future fatigue tests required for this class of composites. Surprisingly, for equal maximum cycle stress level, the fatigue life under fill-directional loading appears about three times shorter than that under warp-directional loading. The 100,000 cycle, 500,000 cycle and 1000,000 cycle fatigue loading with 450 MPa maximum cycle stress has resulted in so high variations of post-fatigue static modulus, strength and ultimate strain, that no consistent and statistically meaningful trends could have been established; further extensive experimental studies are required to reliably quantify this effect. (C) 2011 Elsevier Ltd. All rights reserved.tr_TR
dc.description.sponsorshipKU Leuventr_TR
dc.language.isoentr_TR
dc.publisherElsevier Sciencetr_TR
dc.rightsinfo:eu-repo/semantics/closedAccesstr_TR
dc.subjectMaterials sciencetr_TR
dc.subject3-dimensional reinforcementstr_TR
dc.subjectFatiguetr_TR
dc.subjectDamagetr_TR
dc.subjectAcoustic emissiontr_TR
dc.subjectMechanismstr_TR
dc.subjectWeavetr_TR
dc.subjectAcoustic emissionstr_TR
dc.subjectFatigue testingtr_TR
dc.subjectLoadingtr_TR
dc.subjectStress analysistr_TR
dc.subjectThree dimensionaltr_TR
dc.subjectWeavingtr_TR
dc.subject3-dimensional reinforcementtr_TR
dc.subject3D orthogonaltr_TR
dc.subjectB. fatiguetr_TR
dc.subjectC. damagetr_TR
dc.subjectCarbon/epoxy compositestr_TR
dc.subjectCycle fatigue loadingtr_TR
dc.subjectD. acoustic emissiontr_TR
dc.subjectDamage initiationtr_TR
dc.subjectDamage thresholdtr_TR
dc.subjectDebondstr_TR
dc.subjectExperimental studiestr_TR
dc.subjectFatigue damage progressiontr_TR
dc.subjectFatigue life diagramtr_TR
dc.subjectFatigue stresstr_TR
dc.subjectFatigue teststr_TR
dc.subjectHigh energytr_TR
dc.subjectIn-planetr_TR
dc.subjectLoading directiontr_TR
dc.subjectLow energiestr_TR
dc.subjectMatrix compositetr_TR
dc.subjectMatrix crackingtr_TR
dc.subjectPractical importancetr_TR
dc.subjectPre-fatiguetr_TR
dc.subjectQuasi-static teststr_TR
dc.subjectStatic modulustr_TR
dc.subjectStress levelstr_TR
dc.subjectStress rangetr_TR
dc.subjectTensile behaviorstr_TR
dc.subjectTension-tension fatigue behaviortr_TR
dc.subjectUltimate straintr_TR
dc.subjectFatigue damagetr_TR
dc.titleFatigue tensile behavior of carbon/epoxy composite reinforced with non-crimp 3D orthogonal woven fabrictr_TR
dc.typeArticletr_TR
dc.identifier.wos000297184000023tr_TR
dc.identifier.scopus2-s2.0-80054974909tr_TR
dc.relation.tubitakBIDEB 2219tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Teknik Bilimler Meslek Yüksek Okulu.tr_TR
dc.identifier.startpage1961tr_TR
dc.identifier.endpage1972tr_TR
dc.identifier.volume71tr_TR
dc.identifier.issue16tr_TR
dc.relation.journalComposites Science and Technologytr_TR
dc.contributor.buuauthorKarahan, Mehmet-
dc.contributor.researcheridAAK-4298-2021tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMaterials science, compositestr_TR
dc.indexed.wosSCIEtr_TR
dc.indexed.scopusScopustr_TR
dc.wos.quartileQ1tr_TR
dc.contributor.scopusid8649952500tr_TR
dc.subject.scopusBraided Composites; Braiding; Three Dimensional Compositestr_TR
Appears in Collections:Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.