Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/23052
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-12-08T05:30:59Z-
dc.date.available2021-12-08T05:30:59Z-
dc.date.issued2006-
dc.identifier.citationÖzalp, A. A. (2006). ''Numerical analysis of choked converging nozzle flows with surface roughness and heat flux conditions''. Sadhana - Academy Proceedings in Engineering Sciences, 31(1), 31-46.en_US
dc.identifier.issn0256-2499-
dc.identifier.urihttps://doi.org/10.1007/BF02703798-
dc.identifier.urihttps://link.springer.com/article/10.1007%2FBF02703798-
dc.identifier.urihttp://hdl.handle.net/11452/23052-
dc.description.abstractChoked converging nozzle flow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are conducted with sufficiently wide ranges of covergence half angle, surface roughness and heat flux conditions. Numerical findings show that inlet Mach and Nusselt numbers decrease up to 23.1% and 15.8% with surface heat flux and by 15.13% and 4.8% due to surface roughness. Considering each convergence half angle case individually results in a linear relation between nozzle discharge coefficients and exit Reynolds numbers with similar slopes. Heat flux implementation, by decreasing the shear stress values, lowers the risks due to wear hazards at upstream sections of flow walls; however the final 10% downstream nozzle portion is determined to be quite critical, where shear stress attains the highest magnitudes. Heat transfer rates are seen to increase in the streamwise direction LIP to 2.7 times; however high convergence half angles, heat flux and surface roughness conditions lower inlet Nusselt numbers by 70%, 15.8% and 4.8% respectively.en_US
dc.language.isoenen_US
dc.publisherSpringer Indiaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEngineeringen_US
dc.subjectMatrix algebraen_US
dc.subjectTransfer matrixen_US
dc.subjectNumerical analysisen_US
dc.subjectSurface wear hazarden_US
dc.subjectNusselt numberen_US
dc.subjectNozzle energy transport capabilityen_US
dc.subjectSurface roughnessen_US
dc.subjectDischarge coefficienten_US
dc.subjectSonic nozzlesen_US
dc.subjectCoefficientsen_US
dc.subjectRocketen_US
dc.subjectMathematical modelsen_US
dc.subjectHeat transferen_US
dc.subjectConvergence of numerical methodsen_US
dc.subjectHeat fluxen_US
dc.titleNumerical analysis of choked converging nozzle flows with surface roughness and heat flux conditionsen_US
dc.typeArticleen_US
dc.identifier.wos000236008400004tr_TR
dc.identifier.scopus2-s2.0-33744966128tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik-Mimarlık Fakültesi/Makine Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-4976-9027tr_TR
dc.identifier.startpage31tr_TR
dc.identifier.endpage46tr_TR
dc.identifier.volume31tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalSadhana - Academy Proceedings in Engineering Sciencesen_US
dc.contributor.buuauthorÖzalp, A. Alper-
dc.contributor.researcheridABI-6888-2020tr_TR
dc.subject.wosEngineering, multidisciplinaryen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid6506131689tr_TR
dc.subject.scopusSonic Nozzles; Discharge Coefficient; Critical Flowen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Özalp_2006.pdf199.46 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons