Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/23167
Title: Prediction of dynamic hysteresis loops of nano-crystalline cores
Authors: Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Anabilim Dalı.
0000-0002-0781-3376
0000-0003-2546-0022
Hacıismailoğlu, Muhammed Cüneyt
Küçük, İlker Semih
Derebaşı, Naim
K-7950-2012
AAI-2254-2021
8975743500
6602910810
11540936300
Keywords: Dynamic hysteresis modelling
Nano-crystalline cores
Neural network
Toroidal cores
Computer science
Engineering
Operations research & management science
Crystalline materials
Hysteresis loops
Magnetic levitation vehicles
Magnetic materials
Neural networks
Delta-bar-delta
Dynamic hysteresis loops
Dynamic hysteresis modeling
Dynamic hysteresis modelling
Geometrical dimensions
Nanocrystalline cores
Neural network model
Wide frequency range
Hysteresis
Issue Date: Mar-2009
Publisher: Pergamon-Elsevier Science
Citation: Hacıismailoğlu, M. C. vd. (2009). "Prediction of dynamic hysteresis loops of nano-crystalline cores". Expert Systems with Applications, 36(2), Part 1, 2225-2227.
Abstract: Dynamic hysteresis loops of a range of nano-crystalline cores have been obtained over a wide frequency range (1-50 kHz). A dynamic hysteresis model front measurements using an artificial neural network trained by the delta-bar-delta learning algorithm has been developed. The input parameters include the geometrical dimensions of cores, peak magnetic induction and magnetizing frequency. The results show the neural network model has an acceptable estimation capability for dynamic hysteresis loops of toroidal nano-crystalline cores.
URI: https://doi.org/10.1016/j.eswa.2007.12.051
https://www.sciencedirect.com/science/article/pii/S0957417407006422
http://hdl.handle.net/11452/23167
ISSN: 0957-4174
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.