Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/23185
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-12-13T05:49:32Z-
dc.date.available2021-12-13T05:49:32Z-
dc.date.issued2006-03-
dc.identifier.citationKüçük, N. ve Küçük, İ. (2006). ''Prediction of transmitted gamma-ray spectra measured with NaI(Tl) detector using neural network''. Annals of Nuclear Energy, 33(5), 401-404.en_US
dc.identifier.issn0306-4549-
dc.identifier.urihttps://doi.org/10.1016/j.anucene.2006.01.001-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0306454906000041-
dc.identifier.urihttp://hdl.handle.net/11452/23185-
dc.description.abstractArtificial neural network (ANN) has recently been used for the analysis of gamma-ray spectrum. The ANN can provide a computational model which has a cost in terms of the time comparable to that of more conventional mathematical models. In this paper, the gamma-ray spectra measured for 7 different mediums were available in the training data set to ANN which was developed 11-input layer, 1-output layer model with three hidden layer. The input parameters were atomic percent of elements constituted the mediums, Compton cross-section, photoelectric cross-section and channel number. The output parameter was counts per channel. The network has been trained using Kohonen and back propagation algorithm with the hyperbolic tangent transfer function in hidden layers and sigmoid transfer function in output layer. After the network was trained, mean squared error was found to be 0.00008. When the network was tested by untrained data, the linear correlation coefficient was found to be 99%.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNuclear science & technologyen_US
dc.subjectPhotoelectricityen_US
dc.subjectNeural networksen_US
dc.subjectMathematical modelsen_US
dc.subjectGamma raysen_US
dc.subjectAlgorithmsen_US
dc.subjectTraining data seten_US
dc.subjectSigmoid transfer functionen_US
dc.subjectGamma-ray spectrumen_US
dc.subjectParticle detectorsen_US
dc.subjectWateren_US
dc.titlePrediction of transmitted gamma-ray spectra measured with NaI(Tl) detector using neural networken_US
dc.typeArticleen_US
dc.identifier.wos000237040200001tr_TR
dc.identifier.scopus2-s2.0-33644592649tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen Edebiyet Fakültesi/Fizik Bölümü.tr_TR
dc.identifier.startpage401tr_TR
dc.identifier.endpage404tr_TR
dc.identifier.volume33tr_TR
dc.identifier.issue5tr_TR
dc.relation.journalAnnals of Nuclear Energyen_US
dc.contributor.buuauthorKüçük, Nil-
dc.contributor.buuauthorKüçük, İlker-
dc.subject.wosNuclear science & technologyen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubmeden_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid24436223800tr_TR
dc.contributor.scopusid6602910810tr_TR
dc.subject.scopusGamma Ray Spectra; Radioactive Materials; Nuclidesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.