Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/23198
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Keskinler, Bulent | - |
dc.contributor.author | Dizge, Nadir | - |
dc.date.accessioned | 2021-12-13T10:39:22Z | - |
dc.date.available | 2021-12-13T10:39:22Z | - |
dc.date.issued | 2011-04 | - |
dc.identifier.citation | Yücel, Y. vd. (2011). "Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase". Biomass and Bioenergy, 35(4), Special Issue, 1496-1501. | en_US |
dc.identifier.issn | 0961-9534 | - |
dc.identifier.uri | https://doi.org/10.1016/j.biombioe.2010.12.018 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0961953410004721 | - |
dc.identifier.uri | http://hdl.handle.net/11452/23198 | - |
dc.description.abstract | Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L (R) and Novozym 388 (R), were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 degrees C and total reaction time 6 h. Lipozyme TL-100L (R) lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Agriculture | en_US |
dc.subject | Biotechnology & applied microbiology | en_US |
dc.subject | Energy & fuels | en_US |
dc.subject | Brassica napus | en_US |
dc.subject | Fame | en_US |
dc.subject | Styrene-divinylbenzene | en_US |
dc.subject | Enzyme activity | en_US |
dc.subject | Biocatalysis | en_US |
dc.subject | Lipase | en_US |
dc.subject | Biodiesel fuel production | en_US |
dc.subject | Catalyzed transesterification | en_US |
dc.subject | Improvement | en_US |
dc.subject | Sunflower | en_US |
dc.subject | Aspergillus oryzae | en_US |
dc.subject | Brassica napus | en_US |
dc.subject | Brassica napus var. napus | en_US |
dc.subject | Adsorption | en_US |
dc.subject | Aldehydes | en_US |
dc.subject | Biodiesel | en_US |
dc.subject | Emulsification | en_US |
dc.subject | Enzyme activity | en_US |
dc.subject | Enzymes | en_US |
dc.subject | Esterification | en_US |
dc.subject | Esters | en_US |
dc.subject | Fatty acids | en_US |
dc.subject | Functional groups | en_US |
dc.subject | Functional polymers | en_US |
dc.subject | Hydrolases | en_US |
dc.subject | Industrial applications | en_US |
dc.subject | Lipases | en_US |
dc.subject | Methanol | en_US |
dc.subject | Polymers | en_US |
dc.subject | Styrene | en_US |
dc.subject | Synthetic fuels | en_US |
dc.subject | Aspergillus Oryzae | en_US |
dc.subject | Biocatalysis | en_US |
dc.subject | Biodiesel production | en_US |
dc.subject | Brassica napus | en_US |
dc.subject | Canola oil | en_US |
dc.subject | Covalent attachment | en_US |
dc.subject | Enzyme deactivation | en_US |
dc.subject | FAME | en_US |
dc.subject | Fatty acid methyl ester | en_US |
dc.subject | High internal phase emulsions | en_US |
dc.subject | Immobilized lipase | en_US |
dc.subject | Lipase enzyme | en_US |
dc.subject | Lipase immobilization | en_US |
dc.subject | Lipozyme | en_US |
dc.subject | Long chain fatty acid | en_US |
dc.subject | Methyl esters | en_US |
dc.subject | Microporous | en_US |
dc.subject | Molar ratio | en_US |
dc.subject | Novozymes | en_US |
dc.subject | Operational stability | en_US |
dc.subject | Physical adsorption | en_US |
dc.subject | Polymeric matrices | en_US |
dc.subject | Reaction time | en_US |
dc.subject | Semicontinuous operation | en_US |
dc.subject | Styrene-divinylbenzene | en_US |
dc.subject | Transesterification reaction | en_US |
dc.subject | Biofuel | en_US |
dc.subject | Catalysis | en_US |
dc.subject | Dicotyledon | en_US |
dc.subject | Enzyme activity | en_US |
dc.subject | Ester | en_US |
dc.subject | Fatty acid | en_US |
dc.subject | Fungus | en_US |
dc.subject | Immobilization | en_US |
dc.subject | Vegetable oil | en_US |
dc.subject | Enzyme inhibition | en_US |
dc.title | Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000289611400012 | tr_TR |
dc.identifier.scopus | 2-s2.0-79952533596 | tr_TR |
dc.relation.tubitak | MAG-261 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Kimya Anabilim Dalı. | tr_TR |
dc.relation.bap | 2004/43 | tr_TR |
dc.contributor.orcid | 0000-0002-8572-4213 | tr_TR |
dc.contributor.orcid | 0000-0003-1508-0181 | tr_TR |
dc.contributor.orcid | 0000-0002-9381-0410 | tr_TR |
dc.identifier.startpage | 1496 | tr_TR |
dc.identifier.endpage | 1501 | tr_TR |
dc.identifier.volume | 35 | tr_TR |
dc.identifier.issue | 4 (Special Issue) | en_US |
dc.relation.journal | Biomass and Bioenergy | en_US |
dc.contributor.buuauthor | Yücel, Yasin | - |
dc.contributor.buuauthor | Demir, Cevdet | - |
dc.contributor.researcherid | G-1507-2019 | tr_TR |
dc.contributor.researcherid | ABA-2005-2020 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Agricultural engineering | en_US |
dc.subject.wos | Biotechnology & applied microbiology | en_US |
dc.subject.wos | Energy &fuels | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 6603779481 | tr_TR |
dc.contributor.scopusid | 7003565902 | tr_TR |
dc.subject.scopus | Transesterification; Triacylglycerol Lipase; Pseudozyma Antarctica | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.