Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/23478
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2021-12-23T07:07:33Z-
dc.date.available2021-12-23T07:07:33Z-
dc.date.issued2011-
dc.identifier.citationOsman, B. vd. (2011). "Immobilization of glucoamylase onto lewis metal ion chelated magnetic affinity sorbent: Kinetic, isotherm and thermodynamic studies". Journal of Macromolecular Science, Part A-Pure and Applied Chemistry, 48(5), 387-399.en_US
dc.identifier.issn1060-1325-
dc.identifier.issn1520-5738-
dc.identifier.urihttps://doi.org/10.1080/10601325.2011.562734-
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/10601325.2011.562734-
dc.identifier.urihttp://hdl.handle.net/11452/23478-
dc.description.abstractIn this study, magnetic metal-chelate beads, m-poly(ethylene glycol dimethacrylate-vinyl imidazole) [m-poly(EGDMA-VIM)] with an average diameter 150-200 m was synthesized by copolymerizing ethylene glycol dimethacrylate (EGDMA) with vinyl imidazole (VIM). The spesific surface area of the m-poly(EGDMA-VIM) beads was found 63.1 m2/g. Cu2+ ions were chelated on the m-poly(EGDMA-VIM) beads and used in immobilization of Aspergillus niger glucoamylase in a batch system. The maximum glucoamylase adsorption capacity of the m-poly(EGDMA-VIM)-Cu2+ beads was observed as 120 mg/g at pH 6.5. The optimum pH for free and m-poly(EGDMA-VIM)-Cu2+ immobilized glucoamylase were found 4.0 and 4.5, respectively. The optimum temperature of glucoamylase was not changed after immobilization and determined as 60oC for free and immobilized enzyme preparations. The glucoamylase adsorption capacity and adsorbed enzyme activity slightly decreased after 10 batch successive reactions, demonstrating the usefulness of the enzyme-loaded beads in biocatalytic applications. Storage stability was found to increase with immobilization. The effect of various experimental parameters such as pH, glucoamylase concentration, contact time and temperature in aqueous solution were also investigated. Adsorption isotherm obtained for m-poly(EGDMA-VIM)-Cu2+ was consistent with Langmuir model. Kinetic studies showed that the adsorption process agreed with both the pseudo-second-order kinetic model and the modified Ritchie's-second-order kinetic model. Various thermodynamic parameters, free energy (G0), enthalpy (H0) and entropy (S0), were also calculated and the results showed that the adsorption process strongly depended on temperature of medium.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPolymer scienceen_US
dc.subjectImmobilizationen_US
dc.subjectAdsorption isothermsen_US
dc.subjectAdsorption kineticsen_US
dc.subjectGlucoamylaseen_US
dc.subjectIMACen_US
dc.subjectMagnetic supporten_US
dc.subjectReversible useen_US
dc.subjectHuman serumen_US
dc.subjectPh valueen_US
dc.subjectEnzyme activityen_US
dc.subjectBeadsen_US
dc.subjectAdsorptionen_US
dc.subjectRemovalen_US
dc.subjectCatalaseen_US
dc.subjectCu(II)en_US
dc.subjectBindingen_US
dc.subjectAdsorption isothermsen_US
dc.subjectChelationen_US
dc.subjectDyesen_US
dc.subjectEnzyme activityen_US
dc.subjectEnzyme immobilizationen_US
dc.subjectEnzymesen_US
dc.subjectEthyleneen_US
dc.subjectEthylene glycolen_US
dc.subjectKinetic theoryen_US
dc.subjectMetal ionsen_US
dc.subjectpH effectsen_US
dc.subjectTemperatureen_US
dc.subjectAdsorption kineticsen_US
dc.subjectGlucoamylaseen_US
dc.subjectIMACen_US
dc.subjectImmobilizationen_US
dc.subjectMagnetic supporten_US
dc.subjectAdsorptionen_US
dc.titleImmobilization of glucoamylase onto lewis metal ion chelated magnetic affinity sorbent: Kinetic, isotherm and thermodynamic studiesen_US
dc.typeArticleen_US
dc.identifier.wos000289574800009tr_TR
dc.identifier.scopus2-s2.0-79954537873tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Kimya Anabilim Dalı.tr_TR
dc.relation.bapUAP(F)-2008/55tr_TR
dc.relation.bapUAP(F)-2010/26tr_TR
dc.identifier.startpage387tr_TR
dc.identifier.endpage399tr_TR
dc.identifier.volume48tr_TR
dc.identifier.issue5tr_TR
dc.relation.journalJournal of Macromolecular Science, Part A-Pure and Applied Chemistryen_US
dc.contributor.buuauthorOsman, Bilgen-
dc.contributor.buuauthorKara, Ali-
dc.contributor.buuauthorBeşirli, Necati-
dc.contributor.researcheridAAG-6271-2019tr_TR
dc.contributor.researcheridABF-4791-2020tr_TR
dc.subject.wosPolymer scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid15221651200tr_TR
dc.contributor.scopusid7102824859tr_TR
dc.contributor.scopusid6507924888tr_TR
dc.subject.scopusCibacron Blue F 3Ga; Cryogels; Muramidaseen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.