Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/23499
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2021-12-23T10:33:02Z | - |
dc.date.available | 2021-12-23T10:33:02Z | - |
dc.date.issued | 2009 | - |
dc.identifier.citation | Özalp, A. A. (2009). "Entropy analysis of laminar-forced convection in a pipe with wall roughness". International Journal of Exergy, 6(2), 249-275. | en_US |
dc.identifier.issn | 1742-8297 | - |
dc.identifier.uri | https://doi.org/10.1504/IJEX.2009.024001 | - |
dc.identifier.uri | https://www.inderscienceonline.com/doi/abs/10.1504/IJEX.2009.024001 | - |
dc.identifier.uri | http://hdl.handle.net/11452/23499 | - |
dc.description.abstract | Momentum and heat transfer rates, as well as entropy generation have been numerically investigated for fully developed, forced convection, laminar flow in a micro-pipe. Compressible and variable fluid property continuity, Navier-Stokes and energy equations are solved for various Reynolds number, constant heat flux and surface roughness cases; entropy generation is discussed in conjunction with the velocity and temperature profiles, boundary layer parameters and heat transfer-frictional characteristics of the pipe flow. Simulations concentrated on the impact of wall roughness based viscous dissipation on the heat transfer behaviour and so occurring heating/cooling activity and the resulting overall and radial entropy generation. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Inderscience Enterprises | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Be | en_US |
dc.subject | Bejan number | en_US |
dc.subject | Entropy generation | en_US |
dc.subject | Laminar | en_US |
dc.subject | Micropipe | en_US |
dc.subject | Surface roughness | en_US |
dc.subject | Heat-transfer | en_US |
dc.subject | Surface-roughness | en_US |
dc.subject | Thermodynamic analysis | en_US |
dc.subject | Pressure-drop | en_US |
dc.subject | Flow | en_US |
dc.subject | Microchannels | en_US |
dc.subject | Friction | en_US |
dc.subject | Simulation | en_US |
dc.subject | Thermodynamics | en_US |
dc.subject | Energy & fuels | en_US |
dc.subject | Beryllium | en_US |
dc.subject | Boundary layers | en_US |
dc.subject | Forced convection | en_US |
dc.subject | Heat flux | en_US |
dc.subject | Laminar flow | en_US |
dc.subject | Navier Stokes equations | en_US |
dc.subject | Reynolds number | en_US |
dc.subject | Surface roughness | en_US |
dc.subject | Bejan number | en_US |
dc.subject | Entropy generation | en_US |
dc.subject | Frictional characteristics | en_US |
dc.subject | Laminar | en_US |
dc.subject | Laminar forced convections | en_US |
dc.subject | Micropipes | en_US |
dc.subject | Temperature profiles | en_US |
dc.subject | Variable fluid properties | en_US |
dc.subject | Entropy | en_US |
dc.title | Entropy analysis of laminar-forced convection in a pipe with wall roughness | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000265449200007 | tr_TR |
dc.identifier.scopus | 2-s2.0-63649098555 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-4976-9027 | tr_TR |
dc.identifier.startpage | 249 | tr_TR |
dc.identifier.endpage | 275 | tr_TR |
dc.identifier.volume | 6 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.relation.journal | International Journal of Exergy | en_US |
dc.contributor.buuauthor | Özalp, A. Alper | - |
dc.contributor.researcherid | ABI-6888-2020 | tr_TR |
dc.subject.wos | Thermodynamics | en_US |
dc.subject.wos | Energy & fuels | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 6506131689 | tr_TR |
dc.subject.scopus | Knudsen Flow; Microchannels; Brinkman Number | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.