Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/23860
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-01-05T07:27:45Z-
dc.date.available2022-01-05T07:27:45Z-
dc.date.issued2011-01-
dc.identifier.citationHanilci, C. vd. (2011). "Comparison of the impact of some Minkowski metrics on VQ/GMM based speaker recognition". Computers and Electrical Engineering, 37(1), 41-56.en_US
dc.identifier.issn0045-7906-
dc.identifier.issn1879-0755-
dc.identifier.urihttps://doi.org/10.1016/j.compeleceng.2010.08.001-
dc.identifier.urihttps://dl.acm.org/doi/abs/10.1016/j.compeleceng.2010.08.001-
dc.identifier.urihttp://hdl.handle.net/11452/23860-
dc.description.abstractThis paper evaluates the impact of three special forms of the Minkowski metric (Euclidean, City Block, and Chebychev distances) on the performance of the conventional vector quantization (VQ) and Gaussian mixture model (GMM) based closed-set text-independent speaker recognition systems, in terms of recognition rate and confidence on decisions. For the VQ based system, evaluations are carried out using the two most common clustering algorithms, LBG and K-means, and it is revealed which clustering algorithm and distance pair should be used to exploit the best attribute of both to achieve the best recognition rate for a given codebook size. In the case of GMM based system, we introduce the metrics into the GMM using a concatenation of the LBG and K-means algorithms in estimating the initial mean vectors, to which the system performance is sensitive, and explore their impact on system performance. We also make comparison of results obtained from evaluations on clean speech (TIMIT) and telephone speech databases (NTIMIT and NIST2001) with the modern classifiers VQ-UBM and GMM-UBM. It is found that there are cases where conventional VQ based system outperforms the modern systems. Moreover, the impact of distance metrics on the performance of the conventional and modern systems depends on the recognition task imposed (verification/identification).en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectIdentificationen_US
dc.subjectAlgorithmen_US
dc.subjectCharacter recognitionen_US
dc.subjectSpeech recognitionen_US
dc.subjectVector quantizationen_US
dc.subjectCity blocken_US
dc.subjectClean speechen_US
dc.subjectCodebooksen_US
dc.subjectDistance metricsen_US
dc.subjectEuclideanen_US
dc.subjectGaussian Mixture Modelen_US
dc.subjectK-meansen_US
dc.subjectk-Means algorithmen_US
dc.subjectMean vectoren_US
dc.subjectMinkowskien_US
dc.subjectMinkowski metricsen_US
dc.subjectRecognition ratesen_US
dc.subjectSpeaker recognitionen_US
dc.subjectSpeaker recognition systemen_US
dc.subjectSpecial formsen_US
dc.subjectTelephone speechen_US
dc.subjectClustering algorithmsen_US
dc.titleComparison of the impact of some Minkowski metrics on VQ/GMM based speaker recognitionen_US
dc.typeArticleen_US
dc.identifier.wos000287560300004tr_TR
dc.identifier.scopus2-s2.0-79251600402tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.startpage41tr_TR
dc.identifier.endpage56tr_TR
dc.identifier.volume37tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalComputers and Electrical Engineeringen_US
dc.contributor.buuauthorHanilci, Cemal-
dc.contributor.buuauthorErtaş, Figen-
dc.contributor.researcheridS-4967-2016tr_TR
dc.contributor.researcheridAAH-4188-2021tr_TR
dc.subject.wosComputer science, hardware & architectureen_US
dc.subject.wosComputer science, interdisciplinary applicationsen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid35781455400tr_TR
dc.contributor.scopusid24724154500tr_TR
dc.subject.scopusSpeaker Verification; Language Recognition; Utteranceen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.