Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/24397
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-02-10T08:15:53Z | - |
dc.date.available | 2022-02-10T08:15:53Z | - |
dc.date.issued | 2010-12 | - |
dc.identifier.citation | Özmutlu, S. (2010). "Identifying the optimal set of parameters for new topic identification through experimental design". Expert Systems with Applications, 37(12), 7947-7968. | en_US |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.issn | 1873-6793 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2010.04.040 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/abs/pii/S0957417410003404 | - |
dc.identifier.uri | http://hdl.handle.net/11452/24397 | - |
dc.description.abstract | Users are interested in multiple topics during a search session, and identifying the boundaries of search sessions is an important task. This study proposes to use neural networks for defining the topic boundaries in search engine transaction logs, and is a part of ongoing research on automatic new topic identification. The objective of the study is to determine the best set of parameters for neural networks that are designed to perform automatic new topic identification. Sample data logs from FAST (currently owned by Yahoo) and Excite (currently owned by IAC Search & Media) search engines were analyzed. The findings show that neural networks are fairly successful in identifying topic continuations and shifts in search engine transaction logs. The choice of the neural network structure depends on which performance measure is more important to the user. For a certain performance measure, there is a set of parameters of neural networks that will increase the performance of new topic identification in search engine transaction logs. In addition, the threshold value of the output level of neural networks is the most influential parameter on the performance of new topic identification. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Topic identification | en_US |
dc.subject | Neural network | en_US |
dc.subject | Session identification | en_US |
dc.subject | Session identification | en_US |
dc.subject | Experimental design | en_US |
dc.subject | ANOVA | en_US |
dc.subject | WEB | en_US |
dc.subject | Computer science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Operations research & management science | en_US |
dc.subject | Analysis of variance (ANOVA) | en_US |
dc.subject | Design of experiments | en_US |
dc.subject | Fire fighting equipment | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Parameter estimation | en_US |
dc.subject | Statistics | en_US |
dc.subject | Neural network structures | en_US |
dc.subject | Output levels | en_US |
dc.subject | Performance measure | en_US |
dc.subject | Search sessions | en_US |
dc.subject | Session identification | en_US |
dc.subject | Threshold-value | en_US |
dc.subject | Topic identification | en_US |
dc.subject | Transaction log | en_US |
dc.subject | Search engines | en_US |
dc.title | Identifying the optimal set of parameters for new topic identification through experimental design | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000281339900064 | tr_TR |
dc.identifier.scopus | 2-s2.0-77957847350 | tr_TR |
dc.relation.tubitak | 105M320 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü. | tr_TR |
dc.identifier.startpage | 7947 | tr_TR |
dc.identifier.endpage | 7968 | tr_TR |
dc.identifier.volume | 37 | tr_TR |
dc.identifier.issue | 12 | tr_TR |
dc.relation.journal | Expert Systems with Applications | en_US |
dc.contributor.buuauthor | Özmutllu, Seda | - |
dc.contributor.researcherid | AAH-4480-2021 | tr_TR |
dc.subject.wos | Computer science, artificial intelligence | en_US |
dc.subject.wos | Engineering, electrical & electronic | en_US |
dc.subject.wos | Operations research & management science | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 (Computer science, artificial intelligence) | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 6603660605 | tr_TR |
dc.subject.scopus | Query Reformulation; Image Indexing; Digital Libraries | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.