Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24397
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-02-10T08:15:53Z-
dc.date.available2022-02-10T08:15:53Z-
dc.date.issued2010-12-
dc.identifier.citationÖzmutlu, S. (2010). "Identifying the optimal set of parameters for new topic identification through experimental design". Expert Systems with Applications, 37(12), 7947-7968.en_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2010.04.040-
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0957417410003404-
dc.identifier.urihttp://hdl.handle.net/11452/24397-
dc.description.abstractUsers are interested in multiple topics during a search session, and identifying the boundaries of search sessions is an important task. This study proposes to use neural networks for defining the topic boundaries in search engine transaction logs, and is a part of ongoing research on automatic new topic identification. The objective of the study is to determine the best set of parameters for neural networks that are designed to perform automatic new topic identification. Sample data logs from FAST (currently owned by Yahoo) and Excite (currently owned by IAC Search & Media) search engines were analyzed. The findings show that neural networks are fairly successful in identifying topic continuations and shifts in search engine transaction logs. The choice of the neural network structure depends on which performance measure is more important to the user. For a certain performance measure, there is a set of parameters of neural networks that will increase the performance of new topic identification in search engine transaction logs. In addition, the threshold value of the output level of neural networks is the most influential parameter on the performance of new topic identification.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTopic identificationen_US
dc.subjectNeural networken_US
dc.subjectSession identificationen_US
dc.subjectSession identificationen_US
dc.subjectExperimental designen_US
dc.subjectANOVAen_US
dc.subjectWEBen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectOperations research & management scienceen_US
dc.subjectAnalysis of variance (ANOVA)en_US
dc.subjectDesign of experimentsen_US
dc.subjectFire fighting equipmenten_US
dc.subjectNeural networksen_US
dc.subjectParameter estimationen_US
dc.subjectStatisticsen_US
dc.subjectNeural network structuresen_US
dc.subjectOutput levelsen_US
dc.subjectPerformance measureen_US
dc.subjectSearch sessionsen_US
dc.subjectSession identificationen_US
dc.subjectThreshold-valueen_US
dc.subjectTopic identificationen_US
dc.subjectTransaction logen_US
dc.subjectSearch enginesen_US
dc.titleIdentifying the optimal set of parameters for new topic identification through experimental designen_US
dc.typeArticleen_US
dc.identifier.wos000281339900064tr_TR
dc.identifier.scopus2-s2.0-77957847350tr_TR
dc.relation.tubitak105M320tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.identifier.startpage7947tr_TR
dc.identifier.endpage7968tr_TR
dc.identifier.volume37tr_TR
dc.identifier.issue12tr_TR
dc.relation.journalExpert Systems with Applicationsen_US
dc.contributor.buuauthorÖzmutllu, Seda-
dc.contributor.researcheridAAH-4480-2021tr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosOperations research & management scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2 (Computer science, artificial intelligence)en_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid6603660605tr_TR
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Librariesen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.