Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24490
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-02-15T13:19:48Z-
dc.date.available2022-02-15T13:19:48Z-
dc.date.issued2010-07-23-
dc.identifier.citationYaşar, E. ve Reis, M. (2010). "Application of the Jacobi method and integrating factors to a class of Painlevé-Gambier equations". Journal of Physics A-Mathematical and Theoretical, 43(29).en_US
dc.identifier.issn1751-8113-
dc.identifier.urihttps://doi.org/10.1088/1751-8113/43/29/295202-
dc.identifier.urihttps://iopscience.iop.org/article/10.1088/1751-8113/43/29/295202/meta-
dc.identifier.urihttp://hdl.handle.net/11452/24490-
dc.description.abstractIn this work, we consider the motion of chain ball drawing with constant force in the frictionless surface which is a class of the Painleve-Gambier equations. We apply Jacobi's method which enables us to obtain Lagrangians of any second-order differential equation. It is comprised that the Lagrangian obtained by Musielak's method is the particular case of the many Lagrangians that can be obtained by Jacobi's method. In addition, we obtain integrating factors and first integrals for the equation in question by Ibragimov's variational derivative approach.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLast multiplieren_US
dc.subjectDifferential-equationsen_US
dc.subjectSymmetriesen_US
dc.subjectLagrangiansen_US
dc.subjectPhysicsen_US
dc.titleApplication of the Jacobi method and integrating factors to a class of Painlevé-Gambier equationsen_US
dc.typeArticleen_US
dc.identifier.wos000279463100006tr_TR
dc.identifier.scopus2-s2.0-77953944539tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0001-5853-488Xtr_TR
dc.contributor.orcid0000-0003-4732-5753tr_TR
dc.identifier.startpage1tr_TR
dc.identifier.endpage12tr_TR
dc.identifier.volume43tr_TR
dc.identifier.issue29tr_TR
dc.relation.journalJournal of Physics A-Mathematical and Theoreticalen_US
dc.contributor.buuauthorYaşar, Emrullah-
dc.contributor.buuauthorReis, Murat-
dc.contributor.researcheridAAI-1786-2019tr_TR
dc.contributor.researcheridAAG-9947-2021tr_TR
dc.subject.wosPhysics, multidisciplinaryen_US
dc.subject.wosPhysics, mathematicalen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid23471031300tr_TR
dc.contributor.scopusid26322781800tr_TR
dc.subject.scopusSecond-order Ordinary Differential Equations; First Integral; Lie Symmetryen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.