Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/24627
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-02-24T08:08:05Z | - |
dc.date.available | 2022-02-24T08:08:05Z | - |
dc.date.issued | 2011-04 | - |
dc.identifier.citation | Tekcan, A. (2011). "The elliptic curves y2 = x(x - 1)(x - λ)". Ars Combinatoria, 99, 519-529. | en_US |
dc.identifier.issn | 0381-7032 | - |
dc.identifier.uri | http://hdl.handle.net/11452/24627 | - |
dc.description.abstract | Let p be a prime number and let F-p be a finite field. In the first section, we give some preliminaries from elliptic curves over finite fields. In the second section we consider the rational points on the elliptic curves E-p,E-lambda : y(2) = x(x - 1)(x - lambda) over F-p for primes p equivalent to 3 (mod 4), where lambda not equal 0, 1. We proved that the order of E-p,E-lambda over F-p is p + 1 if lambda = 2, p+1/2 or p - 1. Later we generalize this result to F-p(n) for any integer n >= 2. Also we obtain some results concerning the sum of x-and y-coordinates of all rational points (x, y) on E-p,E-lambda over F-p. In the third section, we consider the rank of E-lambda : y(2) = x(x - 1)(x - lambda) over Q. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Charles Babbage Res CTR | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Elliptic curves over finite fields | en_US |
dc.subject | Rational points on elliptic curves | en_US |
dc.subject | Rank of elliptic curves | en_US |
dc.subject | Rank | en_US |
dc.title | The elliptic curves y2 = x(x - 1)(x - λ) | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000288971800044 | tr_TR |
dc.identifier.scopus | 2-s2.0-79953847086 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. | tr_TR |
dc.identifier.startpage | 519 | tr_TR |
dc.identifier.endpage | 529 | tr_TR |
dc.identifier.volume | 99 | tr_TR |
dc.relation.journal | Ars Combinatoria | en_US |
dc.contributor.buuauthor | Tekcan, Ahmet | - |
dc.contributor.researcherid | AAH-8518-2021 | tr_TR |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q4 | en_US |
dc.contributor.scopusid | 55883777900 | tr_TR |
dc.subject.scopus | Elliptic Curves; Congruent Numbers; Selmer Group | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.