Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24765
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-03-01T08:30:37Z-
dc.date.available2022-03-01T08:30:37Z-
dc.date.issued2010-05-
dc.identifier.citationKüçük, N. (2010). "Computation of gamma-ray exposure buildup factors up to 10 mfp using generalized feed-forward neural network". Expert Systems with Applications, 37(5), 3762-3767.en_US
dc.identifier.issn0957-4174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.11.047-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417409009890-
dc.identifier.urihttp://hdl.handle.net/11452/24765-
dc.description.abstractThis paper presents an approach based on generalized feed-forward neural network (GFFNN) to compute exposure buildup factors (B(D)) for point isotropic sources in infinite homogeneous media at energies varying from 0.03 MeV to 15 MeV and up to depths of 10 mean free paths (mfp). The results obtained by using the proposed model have been compared with the ANSI standard data, the calculations by use of EGS4 Monte Carlo code and Invariant Embedding (IE) Method for water, iron, lead and concrete. The comparisons have shown that the GFFNN model improved B(D) estimation with respect to the other methods, particularly for lead and concrete.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBuildup factoren_US
dc.subjectRadiation shieldingen_US
dc.subjectGamma-rayen_US
dc.subjectArtificial neural networken_US
dc.subjectPredictionen_US
dc.subjectParametersen_US
dc.subjectAlghorithmsen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectOperations research & management scienceen_US
dc.subjectGamma raysen_US
dc.subjectRadiation shieldingen_US
dc.subjectStarsen_US
dc.subjectANSI standardsen_US
dc.subjectArtificial neural networken_US
dc.subjectGamma-ray exposureen_US
dc.subjectHomogeneous mediaen_US
dc.subjectIsotropic sourcesen_US
dc.subjectMean free pathen_US
dc.subjectMonte Carlo codesen_US
dc.subjectNeural networksen_US
dc.titleComputation of gamma-ray exposure buildup factors up to 10 mfp using generalized feed-forward neural networken_US
dc.typeArticleen_US
dc.identifier.wos000274594300028tr_TR
dc.identifier.scopus2-s2.0-73249129245tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.tr_TR
dc.contributor.orcid0000-0002-9193-4591tr_TR
dc.identifier.startpage3762tr_TR
dc.identifier.endpage3767tr_TR
dc.identifier.volume37tr_TR
dc.identifier.issue5tr_TR
dc.relation.journalExpert Systems with Applicationsen_US
dc.contributor.buuauthorKüçük, Nil-
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosOperations research & management scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.wos.quartileQ2 (Computer science, artificial intelligence)en_US
dc.contributor.scopusid24436223800tr_TR
dc.subject.scopusRadiation Shield; Attenuation Coefficients; Shieldingen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.