Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24775
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-03-01T11:26:32Z-
dc.date.available2022-03-01T11:26:32Z-
dc.date.issued2009-
dc.identifier.citationÖzmutlu, H. C. (2009). "Markovian analysis for automatic new topic identification in search engine transaction logs". Applied Stochastic Models in Business and Industry, 25(6), 737-768.en_US
dc.identifier.issn1524-1904-
dc.identifier.urihttps://doi.org/10.1002/asmb.758-
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/asmb.758-
dc.identifier.urihttp://hdl.handle.net/11452/24775-
dc.description.abstractTopic analysis of search engine user queries is an important task, since successful exploitation of the topic of queries can result in the design of new information retrieval algorithms for more efficient search engines. Identification of topic changes within a user search session is a key issue in analysis of search engine user queries. This study presents ail application of Markov chains in the area of search engine research to automatically identify topic changes in a user session by using statistical characteristics of queries, such as time intervals, query reformulation patterns and the continuation/shift status of the previous query. The findings show that Markov chains provide fairly Successful results for automatic new topic identification with a high level of estimation for topic continuations and shifts.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInformation retrievalen_US
dc.subjectMarkov chainsen_US
dc.subjectMarkovian analysisen_US
dc.subjectSearch engineen_US
dc.subjectTopic identificationen_US
dc.subjectUser behavioren_US
dc.subjectSession identificationen_US
dc.subjectWeben_US
dc.subjectUsersen_US
dc.subjectLifeen_US
dc.subjectOperations research & management scienceen_US
dc.subjectMathematicsen_US
dc.subjectBehavioral researchen_US
dc.subjectEnginesen_US
dc.subjectInformation servicesen_US
dc.subjectMarkov processesen_US
dc.subjectSearch enginesen_US
dc.subjectWorld Wide Weben_US
dc.subjectMarkov Chainen_US
dc.subjectMarkovianen_US
dc.subjectMarkovian analysisen_US
dc.subjectTopic identificationen_US
dc.subjectUser behavioren_US
dc.subjectUser behaviorsen_US
dc.subjectInformation retrievalen_US
dc.titleMarkovian analysis for automatic new topic identification in search engine transaction logsen_US
dc.typeArticleen_US
dc.identifier.wos000273413500008tr_TR
dc.identifier.scopus2-s2.0-73349140503tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.identifier.startpage737tr_TR
dc.identifier.endpage768tr_TR
dc.identifier.volume25tr_TR
dc.identifier.issue6tr_TR
dc.relation.journalApplied Stochastic Models in Business and Industryen_US
dc.contributor.buuauthorÖzmutlu, Hüseyin Cenk-
dc.contributor.researcheridABH-5209-2020tr_TR
dc.subject.wosOperations research & management scienceen_US
dc.subject.wosMathematics, interdisciplinary applicationsen_US
dc.subject.wosStatistics & probabilityen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid6603061328tr_TR
dc.subject.scopusQuery Reformulation; Image Indexing; Information Retrievalen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.