Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/24884
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMestre, X.-
dc.contributor.authorHernando, J.-
dc.contributor.authorPardas, M.-
dc.date.accessioned2022-03-08T06:06:46Z-
dc.date.available2022-03-08T06:06:46Z-
dc.date.issued2011-
dc.identifier.citationHanilçi, C. ve Ertaş, F. (2011). ''VQ-UBM based speaker verification through dimension reduction using local PCA''. ed. X. Mestre vd. 19. European Signal Processing Conference (Eusipco-2011), 1303-1306.en_US
dc.identifier.issn2076-1465-
dc.identifier.urihttps://ieeexplore.ieee.org/document/7074260-
dc.identifier.urihttp://hdl.handle.net/11452/24884-
dc.descriptionBu çalışma, 29 Ağustos-2 Eylül 2011 tarihleri arasında Barselona[İspanya]'da düzenlenen 19. European Signal Processing Conference (Eusipco-2011)'de bildiri olarak sunulmuştur.tr_TR
dc.description.abstractThe universal background model (UBM) based classifiers have recently been popular for speaker recognition. In this paper, we propose a dimension reduction method using local principal component analysis to improve the performance of speaker verification systems, where maximum a Posteriori (MAP) adapted vector quantization classifier (VQ-MAP or VQ-UBM) is employed. The proposed system first partitions the UBM data into disjoint regions (clusters) via conventional VQ algorithm and PCA is performed on the set of feature vectors in each region to obtain transformation matrix. Then, multiple speaker model is constructed using the set of transformed feature vectors closest to each cluster through MAP adaptation. Conducting experiments on NIST 2001 SRE, it is shown that transforming the data onto a lower dimensional space by the proposed method improves the recognition accuracy.en_US
dc.language.isoenen_US
dc.publisherEuropean Assoc Signal Speech & Image Processing-Eurasipen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEngineeringen_US
dc.subjectImaging science & photographic technologyen_US
dc.subjectGaussian mixture-modelsen_US
dc.subjectIdentificationen_US
dc.subjectGmmen_US
dc.subjectRecognitionen_US
dc.subjectLinear transformationsen_US
dc.subjectMetadataen_US
dc.subjectPrincipal component analysisen_US
dc.subjectSignal processingen_US
dc.subjectVector quantizationen_US
dc.subjectDimension reductionen_US
dc.subjectDimension reduction methoden_US
dc.subjectDimensional spacesen_US
dc.subjectDisjoint regionsen_US
dc.subjectFeature vectorsen_US
dc.subjectLocal principal component analysisen_US
dc.subjectMAP adaptationen_US
dc.subjectMaximum a posteriorien_US
dc.subjectRecognition accuracyen_US
dc.subjectSpeaker modelen_US
dc.subjectSpeaker recognitionen_US
dc.subjectSpeaker verificationen_US
dc.subjectSpeaker verification systemen_US
dc.subjectTransformation matricesen_US
dc.subjectUniversal background modelen_US
dc.subjectVQ algorithmen_US
dc.subjectSpeech recognitionen_US
dc.titleVQ-UBM based speaker verification through dimension reduction using local PCAen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000377963100264tr_TR
dc.identifier.scopus2-s2.0-84863731345tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.startpage1303tr_TR
dc.identifier.endpage1306tr_TR
dc.relation.journal19. European Signal Processing Conference (Eusipco-2011)en_US
dc.contributor.buuauthorHanilçi, Cemal-
dc.contributor.buuauthorErtaş, Figen-
dc.contributor.researcheridAAH-4188-2021tr_TR
dc.contributor.researcheridS-4967-2016tr_TR
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosImaging science & photographic technologyen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid35781455400tr_TR
dc.contributor.scopusid24724154500tr_TR
dc.subject.scopusSpeaker Verification; Language Recognition; Utteranceen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.