Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/25185
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-03-18T08:42:04Z | - |
dc.date.available | 2022-03-18T08:42:04Z | - |
dc.date.issued | 2009-03 | - |
dc.identifier.citation | Küçük, İ. S. vd. (2009). "Dynamic hysteresis modelling for nano-crystalline cores". Expert Systems with Applications, 36(2), 3188-3190. | en_US |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2008.01.084 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0957417408000997 | - |
dc.identifier.uri | http://hdl.handle.net/11452/25185 | - |
dc.description.abstract | This paper presents all artificial neural network approach based oil dynamic Preisach model to compute hysteresis loops of nano-crystalline cores. The network has been trained by a Levenberg-Marquardt learning algorithm. The model is fast and does not require tremendous computational efforts. The results obtained by using the proposed model are in good agreement with experimental results. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Dynamic hysteresis model | en_US |
dc.subject | Nano-crystal | en_US |
dc.subject | Neural network | en_US |
dc.subject | Neural-network | en_US |
dc.subject | Genetic algorithm | en_US |
dc.subject | Toroidal cores | en_US |
dc.subject | Power losses | en_US |
dc.subject | Prediction | en_US |
dc.subject | Computer science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Operations research & management science | en_US |
dc.subject | Crystalline materials | en_US |
dc.subject | Hysteresis loops | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Artificial neural network approach | en_US |
dc.subject | Computational effort | en_US |
dc.subject | Dynamic hysteresis modeling | en_US |
dc.subject | Dynamic hysteresis modelling | en_US |
dc.subject | Levenberg-Marquardt learning algorithms | en_US |
dc.subject | Nanocrystalline cores | en_US |
dc.subject | ON dynamics | en_US |
dc.subject | Hysteresis | en_US |
dc.title | Dynamic hysteresis modelling for nano-crystalline cores | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000262178100060 | tr_TR |
dc.identifier.scopus | 2-s2.0-56349090867 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü. | tr_TR |
dc.relation.bap | 2002/4 | tr_TR |
dc.contributor.orcid | 0000-0002-0781-3376 | tr_TR |
dc.contributor.orcid | 0000-0003-2546-0022 | tr_TR |
dc.identifier.startpage | 3188 | tr_TR |
dc.identifier.endpage | 3190 | tr_TR |
dc.identifier.volume | 36 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.relation.journal | Expert Systems with Applications | en_US |
dc.contributor.buuauthor | Küçük, İlker Semih | - |
dc.contributor.buuauthor | Hacıismailoğlu, Muhammed Cüneyt | - |
dc.contributor.buuauthor | Derebaşı, Naim | - |
dc.contributor.researcherid | K-7950-2012 | tr_TR |
dc.contributor.researcherid | AAI-2254-2021 | tr_TR |
dc.subject.wos | Computer science, artificial intelligence | en_US |
dc.subject.wos | Engineering, electrical & electronic | en_US |
dc.subject.wos | Operations research & management science | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 6602910810 | tr_TR |
dc.contributor.scopusid | 8975743500 | tr_TR |
dc.contributor.scopusid | 11540936300 | tr_TR |
dc.subject.scopus | Silicon Steel; Soft Magnetic Materials; Iron | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.