Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/25292
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Miti, G.K. | - |
dc.contributor.author | Moses, Anthony John | - |
dc.contributor.author | Fox, David | - |
dc.date.accessioned | 2022-03-23T07:19:11Z | - |
dc.date.available | 2022-03-23T07:19:11Z | - |
dc.date.issued | 2003-01 | - |
dc.identifier.citation | Miti, G. K. vd. (2003). “A neural network-based tool for magnetic performance prediction of toroidal cores”. Journal of Magnetism and Magnetic Materials, 254(Special Issue), 262-264. | en_US |
dc.identifier.issn | 0304-8853 | - |
dc.identifier.uri | https://doi.org/10.1016/S0304-8853(02)00788-6 | - |
dc.identifier.uri | http://hdl.handle.net/11452/25292 | - |
dc.description | Bu çalışma, 05-07 Eylül 2001 tarihleri arasında Bilbao[İspanya]’da düzenlenen 15. International Symposium on Soft Magnetic Materials’da bildiri olarak sunulmuştur. | tr_TR |
dc.description.abstract | Geometrical and building parameters have a strong influence on magnetic performance of wound toroidal cores made from electrical steel or similar strip products. This paper presents a neural network-based approach to predict losses and permeability in such cores of varying geometries over an induction range of 0.2-1.8T (50Hz). The approach is shown to be successful. | en_US |
dc.description.sponsorship | MCYT, Gobierno Espanol | en_US |
dc.description.sponsorship | Engineering and Physical Sciences Research Council GR/L36093/01 | en_US |
dc.description.sponsorship | Univ Investigac, Dept Educ | en_US |
dc.description.sponsorship | Univ Paris Vasco, Euskal Herriko Unibertsitatea | en_US |
dc.description.sponsorship | Real Soc Bascongada Amigos Pais | en_US |
dc.description.sponsorship | Agilent Technologies | en_US |
dc.description.sponsorship | BFI, Optilas | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Materials science | en_US |
dc.subject | Physics | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Magnetic losses | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Soft magnetic materials | en_US |
dc.subject | Strip-wound cores | en_US |
dc.subject | Magnetic leakage | en_US |
dc.subject | Magnetic permeability | en_US |
dc.subject | Toroidal cores | en_US |
dc.subject | Magnetic cores | en_US |
dc.title | A neural network-based tool for magnetic performance prediction of toroidal cores | en_US |
dc.type | Article | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.wos | 000180075600081 | tr_TR |
dc.identifier.scopus | 2-s2.0-0037211428 | tr_TR |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü. | tr_TR |
dc.identifier.startpage | 262 | tr_TR |
dc.identifier.endpage | 264 | tr_TR |
dc.identifier.volume | 254 | tr_TR |
dc.identifier.issue | Special Issue | en_US |
dc.relation.journal | Journal of Magnetism and Magnetic Materials | en_US |
dc.contributor.buuauthor | Derebaşı, Naim | - |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Materials science, multidisciplinary | en_US |
dc.subject.wos | Physics, condensed matter | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.wos | CPCIS | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 (Materials science, multidisciplinary) | en_US |
dc.wos.quartile | Q3 (Physics, condensed matter) | en_US |
dc.contributor.scopusid | 11540936300 | tr_TR |
dc.subject.scopus | Silicon Steel; Soft Magnetic Materials; Iron | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.