Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Kinkar C.-
dc.contributor.authorÇevik, Ahmet Sinan-
dc.date.accessioned2022-03-28T13:11:16Z-
dc.date.available2022-03-28T13:11:16Z-
dc.date.issued2013-
dc.identifier.citationDas, K. C. vd. (2013). "The multiplicative Zagreb indices of graph operations". Journal of Inequalities and Applications, 2013(90), 1-14.en_US
dc.identifier.issn1029-242X-
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-90-
dc.identifier.urihttps://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-90-
dc.identifier.urihttp://hdl.handle.net/11452/25394-
dc.description.abstractRecently, Todeschini et al. (Novel Molecular Structure Descriptors - Theory and Applications I, pp. 73-100, 2010), Todeschini and Consonni (MATCH Commun. Math. Comput. Chem. 64:359-372, 2010) have proposed the multiplicative variants of ordinary Zagreb indices, which are defined as follows: Pi(1) = Pi(1)(G) = Pi(v is an element of V(G)) d(G)(V)(2), Pi(2) = Pi(2)(G) = Pi(uv is an element of E(G)) d(G)(u)d(G)(V). These two graph invariants are called multiplicative Zagreb indices by Gutman (Bull. Soc. Math. Banja Luka 18:17-23, 2011). In this paper the upper bounds on the multiplicative Zagreb indices of the join, Cartesian product, corona product, composition and disjunction of graphs are derived and the indices are evaluated for some well-known graphs. MSC: 05C05, 05C90, 05C07.en_US
dc.description.sponsorshipSelçuk Üniversitesitr_TR
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematicsen_US
dc.subjectGraphen_US
dc.subjectMultiplicative Zagreb indexen_US
dc.subjectGraph operationsen_US
dc.subjectTreesen_US
dc.subject1sten_US
dc.titleThe multiplicative Zagreb indices of graph operationsen_US
dc.typeArticleen_US
dc.identifier.wos000318304700001tr_TR
dc.identifier.scopus2-s2.0-84894271644tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.relation.bap2012-15tr_TR
dc.relation.bap2012-19tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage1tr_TR
dc.identifier.endpage14tr_TR
dc.identifier.volume2013tr_TR
dc.identifier.issue90tr_TR
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.contributor.buuauthorYurttaş, Aysun-
dc.contributor.buuauthorTogan, Müge-
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridAAG-8470-2021tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid37090056000tr_TR
dc.contributor.scopusid54403978300tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusGraph; Unicyclic Graph; Vertex Degreeen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Yurttaş_vd_2013.pdf337.72 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons