Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25406
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKockar, Hakan-
dc.date.accessioned2022-03-29T10:40:21Z-
dc.date.available2022-03-29T10:40:21Z-
dc.date.issued2008-02-
dc.identifier.citationŞafak, M. vd. (2008). ''Growth and characterisation of electrodeposited Co/Cu superlattices''. Journal of Nanoscience and Nanotechnology, 8(2), 854-860.en_US
dc.identifier.issn1533-4880-
dc.identifier.issn1533-4899-
dc.identifier.urihttps://doi.org/10.1166/jnn.2008.B242-
dc.identifier.urihttps://www.ingentaconnect.com/content/asp/jnn/2008/00000008/00000002/art00060-
dc.identifier.urihttp://hdl.handle.net/11452/25406-
dc.description.abstractFerromagnetic/non-ferromagnetic Co/Cu superlattices were grown on polycrystalline Titanium (Ti) W from a single electrolyte by electrodeposition. Microstructure and magnetoresistance (MR) of the superlattices were investigated as a function of the electrolyte pH as well as the layer thicknesses. Structural characterisation by X-ray diffraction (XRD) showed that the superlattices have face-centred cubic (fcc) structure with a strong (111) texture at the studied pH levels, but the texture degree is affected by the electrolyte pH. The scanning electron microscope (SEM) studies revealed that the superlattices grown at low pH (2.0) have smoother surfaces compared to those grown at high pH (3.0). The superlattices exhibited either anisotropic magneto resistance (AMR) or giant magnetoresistance (GMR) depending on the Cu layer thickness. The shape of MR curves changes depending on the combination of Co and Cu layer thicknesses. The superlattices with Co layers less than 3 nm and Cu layers less than 2 nm have broad and non-saturating curves, indicating the predominance of a superparamagnetic contribution, possibly due to the discontinuous nature of the ferromagnetic (Cc) layer. For superlattices with the same bilayer and total thicknesses, the GMR magnitude decreased as the electrolyte pH increased. Besides possible structural differences such as the texture degree and the surface roughness, this may arises from the variation in the Cu content of the ferromagnetic layers caused by the electrolyte pH.en_US
dc.language.isoenen_US
dc.publisherAmerican Scientific Publishersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCo/Cu superlatticesen_US
dc.subjectElectrodepositionen_US
dc.subjectElectrolyte pHen_US
dc.subjectGmren_US
dc.subjectElectrodeposition;en_US
dc.subjectElectrolytesen_US
dc.subjectGrowth (materials)en_US
dc.subjectMagnetoresistanceen_US
dc.subjectPolycrystalline materialsen_US
dc.subjectLayer thicknessesen_US
dc.subjectPolycrystalline Titaniumen_US
dc.subjectSuperlatticesen_US
dc.subjectNi-cu/cu superlatticesen_US
dc.subjectGiant magnetoresistanceen_US
dc.subjectComposition dependenceen_US
dc.subjectMultilayersen_US
dc.subjectFilmstr_TR
dc.subjectNi/cuen_US
dc.subjectChemistryen_US
dc.subjectScience & technology - other topicsen_US
dc.subjectMaterials scienceen_US
dc.subjectPhysicsen_US
dc.titleGrowth and characterisation of electrodeposited Co/Cu superlatticesen_US
dc.typeArticleen_US
dc.identifier.wos000254083700060tr_TR
dc.identifier.scopus2-s2.0-42549086320tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.tr_TR
dc.identifier.startpage854tr_TR
dc.identifier.endpage860tr_TR
dc.identifier.volume8tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalJournal of Nanoscience and Nanotechnologyen_US
dc.contributor.buuauthorŞafak, Mürşide-
dc.contributor.buuauthorAlper, Mürsel-
dc.contributor.researcheridAAG-8795-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.identifier.pubmed18464418tr_TR
dc.subject.wosChemistry, multidisciplinaryen_US
dc.subject.wosNanoscience & nanotechnologyen_US
dc.subject.wosMaterials science, multidisciplinaryen_US
dc.subject.wosPhysics, applieden_US
dc.subject.wosPhysics, condensed matteren_US
dc.indexed.wosSCIEen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ1 (Materials science, multidisciplinary)en_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid13613646100tr_TR
dc.contributor.scopusid7005719283tr_TR
dc.subject.scopusGiant Magnetoresistance; Coercivity; Saturation Magnetizationen_US
Appears in Collections:PubMed
Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.