Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimos, T. E.-
dc.contributor.authorPsihoyios, G.-
dc.contributor.authorTsitouras, C.-
dc.contributor.authorAnastassi, Z.-
dc.date.accessioned2022-04-04T09:12:48Z-
dc.date.available2022-04-04T09:12:48Z-
dc.date.issued2012-
dc.identifier.citationYurttaş, A. vd. (2012). "Calculation of the minimal polynomial of 2cos(π/n) over Q with Maple". ed. T. E. Simos vd. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics (ICNAAM 2012), 1479, 371-374.en_US
dc.identifier.isbn978-0-7354-1091-6-
dc.identifier.issn0094-243X-
dc.identifier.issn15517616-
dc.identifier.urihttps://doi.org/10.1063/1.4756141-
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.4756141-
dc.identifier.urihttp://hdl.handle.net/11452/25534-
dc.descriptionBu çalışma, 19-25 Mayıs 2012 tarihleri arasında Kos[Yunanistan]’da düzenlenen International Conference of Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractThe number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups and in the study of regular polyhedra. There are many results about the minimal polynomial of this algebraic number. Here we obtain the minimal polynomial of these numbers over the field of rationals by means of the better known Chebycheff polynomials and the Maple language.en_US
dc.description.sponsorshipEuropean Soc Computat Methods Sci, Engn & Technol (ESCMSET)en_US
dc.description.sponsorshipR M Santilli Fdnen_US
dc.language.isoenen_US
dc.publisherAmerican Inst Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectPhysicsen_US
dc.titleCalculation of the minimal polynomial of 2cos(π/n) over Q with Mapleen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000310698100089tr_TR
dc.identifier.scopus2-s2.0-84883105664tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage371tr_TR
dc.identifier.endpage374tr_TR
dc.identifier.volume1479tr_TR
dc.relation.journalAIP Conference Proceedings,Numerical Analysis and Applied Mathematics (ICNAAM 2012)en_US
dc.contributor.buuauthorYurttaş, Aysun-
dc.contributor.buuauthorÖzgür, Birsen-
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridABI-4127-2020tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridAAG-8470-2021tr_TR
dc.subject.wosMathematics, applieden_US
dc.subject.wosPhysics, applieden_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid37090056000tr_TR
dc.contributor.scopusid54403501400tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusHecke Groups; Modular Forms; Congruence Subgroupsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.