Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25645
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoçal, Osman Hilmi-
dc.date.accessioned2022-04-07T12:41:23Z-
dc.date.available2022-04-07T12:41:23Z-
dc.date.issued2012-
dc.identifier.citationHatun, M. ve Koçal, O. H. (2012). "Recursive successive over-relaxation algorithm for adaptive filtering". 2012 Mosharaka International Conference on Communications, Computers and Applications(MIC-CCA), 90-95.en_US
dc.identifier.isbn978-1-938302-07-7-
dc.identifier.isbn978-1-4673-5230-7-
dc.identifier.issn2227-331X-
dc.identifier.urihttps://ieeexplore.ieee.org/document/6516789/authors#authors-
dc.identifier.urihttp://hdl.handle.net/11452/25645-
dc.descriptionBu çalışma, 12-14 Ekim 2012 tarihleri arasında İstanbul[Türkiye]’da düzenlenen 5. Mosharaka International Conference on Communications, Computers and Applications (MIC-CCA)’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractA new recursive algorithm is introduced to adjust the parameters of an adaptive channel equalizer based on the use one cycle Successive Over-Relaxation (SOR) iteration between two consecutive data samples. The presented algorithm is called the Recursive Successive Over-Relaxation (RSOR) algorithm. In addition, a stochastic convergence analysis of the RSOR algorithm is performed and it is shown that the proposed algorithm is an unbiased parameter estimator for optimum Wiener solution of normal equation. The performance of the RSOR algorithm in terms of its convergence rate and computational complexity is examined using computer simulations and compared with the widely used adaptive algorithms. The computer simulations show that the proposed algorithm has a faster convergence rate than the gradient-based methods and a lower computational complexity than the Recursive Least Squares (RLS) algorithm.en_US
dc.description.sponsorshipMosharaka Res & Studiesen_US
dc.description.sponsorshipIEEE Commun Socen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEngineeringen_US
dc.subjectTelecommunicationsen_US
dc.subjectTransversal filtersen_US
dc.subjectAdaptive algorithmsen_US
dc.subjectComputational complexityen_US
dc.subjectComputer simulationen_US
dc.subjectLeast squares approximationsen_US
dc.subjectParameter estimationen_US
dc.subjectAdaptive channel equalizeren_US
dc.subjectConvergence analysisen_US
dc.subjectFaster convergenceen_US
dc.subjectGradient-based methoden_US
dc.subjectParameter estimatorstr_TR
dc.subjectRecursive algorithmsen_US
dc.subjectRecursive least squares algorithmsen_US
dc.subjectSuccessive over relaxationen_US
dc.subjectIterative methodsen_US
dc.titleRecursive successive over-relaxation algorithm for adaptive filteringen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000323218500016tr_TR
dc.identifier.scopus2-s2.0-84879300908tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0003-0279-5508tr_TR
dc.identifier.startpage90tr_TR
dc.identifier.endpage95tr_TR
dc.relation.journal2012 Mosharaka International Conference on Communications, Computers and Applications (MIC-CCA)en_US
dc.contributor.buuauthorHatun, Metin-
dc.contributor.researcheridAAH-2199-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosTelecommunicationsen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid54684165800tr_TR
dc.subject.scopusRecursive Algorithm; Adaptive Filtering; Beamformingen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.