Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25651
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTürkay, Osman S.-
dc.contributor.authorYoucef-Toumi, Kamal-
dc.date.accessioned2022-04-07T13:49:30Z-
dc.date.available2022-04-07T13:49:30Z-
dc.date.issued2003-
dc.identifier.citationOrbak, A. Y. vd. (2003). “Model reduction in the physical domain”. Journal of Systems and Control Engineering, Proceedings of the Institution of Mechanical Engineers Part I, 217(16), 481-496.en_US
dc.identifier.issn0959-6518-
dc.identifier.urihttps://doi.org/10.1243/095965103322747089-
dc.identifier.urihttps://journals.sagepub.com/doi/10.1177/095965180321700604-
dc.identifier.urihttp://hdl.handle.net/11452/25651-
dc.description.abstractThis paper is concerned with obtaining physical-based low-order approximations of linear physical systems. Low-order models possess some advantages, including the reduction of computational difficulty and understanding of the physics of the original system in a simpler manner. Previously, a number of methods have been suggested to develop suitable low-order approximations. However, most of these approaches do not reflect the relation between the mathematical model and the physical subsystems. Specifically, these techniques do not indicate which of the physical subsystems should be retained or eliminated in the reduced-order model. The proposed model reduction method is based on identifying subsystem types of a physical system using the bond graph method. These subsystems are then removed or retained based on the information from the physical system decomposition procedures and partial fraction expansion residues to obtain a reduced-order model. The physical model reduction procedure is verified on physical linear systems.en_US
dc.language.isoenen_US
dc.publisherSage Publicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutomation and control systemsen_US
dc.subjectModel reductionen_US
dc.subjectBond graphsen_US
dc.subjectPhysical systemsen_US
dc.subjectScale systemsen_US
dc.subjectAlgorithmsen_US
dc.subjectApproximation theoryen_US
dc.subjectComputational complexityen_US
dc.subjectControl equipmenten_US
dc.subjectControl system analysisen_US
dc.subjectGraph theoryen_US
dc.subjectMathematical modelsen_US
dc.subjectVectorsen_US
dc.subjectLinear systemsen_US
dc.titleModel reduction in the physical domainen_US
dc.typeArticleen_US
dc.identifier.wos000187731300004tr_TR
dc.identifier.scopus2-s2.0-0347129764tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-4921-4275tr_TR
dc.identifier.startpage481tr_TR
dc.identifier.endpage496tr_TR
dc.identifier.volume217tr_TR
dc.identifier.issue16tr_TR
dc.relation.journalJournal of Systems and Control Engineering, Proceedings of the Institution of Mechanical Engineers Part Ien_US
dc.contributor.buuauthorOrbak, Ali Yurdun-
dc.contributor.buuauthorEşkinat, Eşref-
dc.contributor.researcheridM-9216-2014tr_TR
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosAutomation and control systemsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid6602664966tr_TR
dc.contributor.scopusid56245282900tr_TR
dc.subject.scopusMethodology; Order Reduction; Numeratoren_US
Appears in Collections:Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.