Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25702
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-04-11T12:21:14Z-
dc.date.available2022-04-11T12:21:14Z-
dc.date.issued2012-01-
dc.identifier.citationÖzalp, A. A. (2012). "Laminar-transitional micropipe flows: Energy and exergy mechanisms based on Reynolds number, pipe diameter, surface roughness and wall heat flux". Heat and Mass Transfer, 48(1), 17-34.en_US
dc.identifier.issn0947-7411-
dc.identifier.issn1432-1181-
dc.identifier.urihttps://doi.org/10.1007/s00231-011-0832-6-
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs00231-011-0832-6-
dc.identifier.urihttp://hdl.handle.net/11452/25702-
dc.description.abstractEnergy and exergy mechanisms of laminar-transitional micropipe flows are computationally investigated by solving the variable fluid property continuity, Navier-Stokes and energy equations. Analyses are carried for wide ranges of Reynolds number (Re = 10-2,000), micropipe diameter (d = 0.50-1.00 mm), non-dimensional surface roughness (epsilon* = 0.001-0.01) and wall heat flux (q '' = 1,000-2,000 W/m(2)) conditions. Computations revealed that friction coefficient (C-f) elevates with higher epsilon* and Re and with lower d, where the rise of epsilon* from 0.001 to 0.01 induced the C-f to increase by 0.7 -> 0.9% (d = 1.00 -> 0.50 mm), 3.4 -> 4.2%, 6.6 -> 8.1%, 9.6 -> 11.9% and 12.4 -> 15.2% for Re = 100, 500, 1,000, 1,500 and 2,000, respectively. Earlier transition exposed with stronger micro-structure and surface roughness at the descriptive transitional Reynolds numbers of Re-tra = 1,656 -> 769 (epsilon* = 0.001 -> 0.01), 1,491 -> 699 and 1,272 -> 611 at d = 1.00, 0.75 and 0.50 mm; the corresponding shape factor (H) and intermittency (gamma) data appear in the narrow ranges of H = 3.135-3.142 and gamma = 0.132-0.135. At higher Re and lower d, epsilon* is determined to become more influential on the heat transfer rates, such that the Nu(epsilon*=0.01)/Nu(epsilon*=0.001) ratio attains the values of 1.002 -> 1.023 (d = 1.00 -> 0.50 mm), 1.012 -> 1.039, 1.025 -> 1.056 and 1.046 -> 1.082 at Re = 100, 500, 1,000 and 2,000. As e * comes out to cause minor variations in the cross-sectional thermal entropy generation rates (S'(Delta T)), q '' is confirmed to augment S'(Delta T), where the impact becomes more pronounced at higher Re and d. Frictional entropy generation values (S'(Delta P)) are found to be motivated by lower d, higher Re and epsilon*, such that the S'(Delta Pd=0.50mm)/S'(DPd=1.00mm) ratio is computed as 4.0011 -> 4.0014 (epsilon* = 0.001 -> 0.01), 4.002 -> 4.007, 4.006 -> 4.027 and 4.023 -> 4.102 at Re = 100, 500, 1,000 and 2,000. As the role of q '' on total entropy generation (S') turns out to be more remarkable at higher d and lower Re, the task of epsilon* becomes more sensible at higher Re.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThermodynamicsen_US
dc.subjectMechanicsen_US
dc.subjectEntropy generationen_US
dc.subjectForced-convectionen_US
dc.subject2nd-law analysisen_US
dc.subjectMicrochannelsen_US
dc.subjectFrictionen_US
dc.subjectDuctsen_US
dc.subjectEntropyen_US
dc.subjectExergyen_US
dc.subjectHeat fluxen_US
dc.subjectNavier stokes equationsen_US
dc.subjectReynolds numberen_US
dc.subjectSurface structureen_US
dc.subjectEnergy and exergyen_US
dc.subjectEnergy equationen_US
dc.subjectFriction coefficientsen_US
dc.subjectEntropy generation rateen_US
dc.subjectHeat transfer rateen_US
dc.subjectIntermittencyen_US
dc.subjectMicropipesen_US
dc.subjectNavier stokesen_US
dc.subjectPipe diameteren_US
dc.subjectShape factoren_US
dc.subjectTotal entropyen_US
dc.subjectVariable fluid propertiesen_US
dc.subjectWall heat fluxen_US
dc.subjectSurface roughnessen_US
dc.titleLaminar-transitional micropipe flows: Energy and exergy mechanisms based on Reynolds number, pipe diameter, surface roughness and wall heat fluxen_US
dc.typeArticleen_US
dc.identifier.wos000300084400002tr_TR
dc.identifier.scopus2-s2.0-84856087520tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.tr_TR
dc.relation.bapM(U)-2009/35tr_TR
dc.contributor.orcid0000-0002-4976-9027tr_TR
dc.identifier.startpage17tr_TR
dc.identifier.endpage34tr_TR
dc.identifier.volume48tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalHeat and Mass Transferen_US
dc.contributor.buuauthorÖzalp, A. Alper-
dc.contributor.researcheridABI-6888-2020tr_TR
dc.subject.wosThermodynamicsen_US
dc.subject.wosMechanicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid6506131689tr_TR
dc.subject.scopusKnudsen Flow; Microchannels; Brinkman Numberen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.