Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25715
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-04-12T05:59:01Z-
dc.date.available2022-04-12T05:59:01Z-
dc.date.issued2012-06-
dc.identifier.citationKara, A. ve Demirbel, E. (2012). "Kinetic, isotherm and thermodynamic analysis on adsorption of Cr(VI) ions from aqueous solutions by synthesis and characterization of magnetic-poly(divinylbenzene-vinylimidazole) microbeads". Water Air & Soil Pollution, 223(5), 2387-2403.en_US
dc.identifier.issn0049-6979-
dc.identifier.issn1573-2932-
dc.identifier.urihttps://doi.org/10.1007/s11270-011-1032-1-
dc.identifier.urihttps://link.springer.com/article/10.1007/s11270-011-1032-1-
dc.identifier.urihttp://hdl.handle.net/11452/25715-
dc.description.abstractThe magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter 53-212 mu m) were synthesized and characterized; their use as adsorbent in removal of Cr(VI) ions from aqueous solutions was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerizing of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterized by N-2 adsorption/desorption isotherms, ESR, elemental analysis, scanning electron microscope (SEM) and swelling studies. At fixed solid/solution ratio the various factors affecting adsorption of Cr(VI) ions from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. Langmuir, Freundlich and Dubinin-Radushkvich isotherms were used as the model adsorption equilibrium data. Langmuir isotherm model was the most adequate. The pseudo-first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The apparent activation energy was found to be 5.024 kJ mol(-1), which is characteristic of a chemically controlled reaction. The experimental data fitted to pseudo-second-order kinetic. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The thermodynamic parameters obtained indicated the endothermic nature of adsorption of Cr(VI) ions. Morever, after the use in adsorption, the m-poly(DVB-VIM) microbeads with paramagnetic property were separeted via the applied magnetic force. The magnetic beads could be desorbed up to about 97% by treating with 1.0 M NaOH. These features make the m-poly(DVB-VIM) microbeads a potential candidate for support of Cr(VI) ions removal under magnetic field.en_US
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEnvironmental sciences & ecologyen_US
dc.subjectMeteorology & atmospheric sciencesen_US
dc.subjectWater resourcesen_US
dc.subjectMagnetic polymersen_US
dc.subjectAdsorption isothermen_US
dc.subjectAdsorption kineticen_US
dc.subjectAdsorption thermodynamicen_US
dc.subjectCr (VI) ionsen_US
dc.subjectHeavy-metal ionsen_US
dc.subjectWaste-wateren_US
dc.subjectActivated carbonen_US
dc.subjectHexavalent chromiumen_US
dc.subjectMagnetic beadsen_US
dc.subjectRemovalen_US
dc.subjectSorptionen_US
dc.subjectBiosorptionen_US
dc.subjectAdsorbenten_US
dc.subjectChitosanen_US
dc.subjectChromium compoundsen_US
dc.subjectDesorptionen_US
dc.subjectDyesen_US
dc.subjectIonsen_US
dc.subjectKineticsen_US
dc.subjectMagnetic fieldsen_US
dc.subjectParamagnetismen_US
dc.subjectPolymethyl methacrylatesen_US
dc.subjectScanning electron microscopyen_US
dc.subjectSynthesis (chemical)en_US
dc.subjectThermoanalysisen_US
dc.subjectThermodynamicsen_US
dc.subjectAdsorption equilibriaen_US
dc.subjectAdsorption kineticsen_US
dc.subjectAdsorption thermodynamicsen_US
dc.subjectAdsorption/desorptionen_US
dc.subjectApparent activation energyen_US
dc.subjectAverage diameteren_US
dc.subjectContact timeen_US
dc.subjectControlled reactionsen_US
dc.subjectEndothermic natureen_US
dc.subjectEntropy changesen_US
dc.subjectExperimental dataen_US
dc.subjectFreundlichen_US
dc.subjectInitial concentrationen_US
dc.subjectIntraparticle diffusion modelsen_US
dc.subjectLangmuir isotherm modelsen_US
dc.subjectLangmuirsen_US
dc.subjectMagnetic beadsen_US
dc.subjectMagnetic forceen_US
dc.subjectMagnetic polymersen_US
dc.subjectMicrobeadsen_US
dc.subjectParamagnetic propertiesen_US
dc.subjectPseudo second order kineticsen_US
dc.subjectSolid/solution ratioen_US
dc.subjectSwelling studiesen_US
dc.subjectThermo dynamic analysisen_US
dc.subjectThermodynamic parameteren_US
dc.subjectAdsorptionen_US
dc.subjectAqueous solutionen_US
dc.subjectBenzeneen_US
dc.subjectChromiumen_US
dc.subjectIsothermen_US
dc.subjectPolymeren_US
dc.subjectRemoval experimenten_US
dc.subjectTemperatureen_US
dc.subjectThermodynamicsen_US
dc.subjectZincen_US
dc.titleKinetic, isotherm and thermodynamic analysis on adsorption of Cr(VI) ions from aqueous solutions by synthesis and characterization of magnetic-poly(divinylbenzene-vinylimidazole) microbeadsen_US
dc.typeArticleen_US
dc.identifier.wos000304467000038tr_TR
dc.identifier.scopus2-s2.0-84862218796tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Kimya Bölümü.tr_TR
dc.relation.bapUAP(F)-2011/35tr_TR
dc.identifier.startpage2387tr_TR
dc.identifier.endpage2403tr_TR
dc.identifier.volume223tr_TR
dc.identifier.issue5tr_TR
dc.relation.journalWater Air & Soil Pollutionen_US
dc.contributor.buuauthorKara, Ali-
dc.contributor.buuauthorDemirbel, Emel-
dc.contributor.researcheridAAG-6271-2019tr_TR
dc.identifier.pubmed22707803tr_TR
dc.subject.wosEnvironmental sciencesen_US
dc.subject.wosMeteorology & atmospheric sciencesen_US
dc.subject.wosWater resourcesen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid7102824859tr_TR
dc.contributor.scopusid54681740300tr_TR
dc.subject.scopusChromium Hexavalent Ion; Biosorbents; Second-Order Modelen_US
dc.subject.emtreeChromiumen_US
dc.subject.emtreeCopolymeren_US
dc.subject.emtreePoly(divinylbenzene 1 vinylimidazole)en_US
dc.subject.emtreeSodium hydroxideen_US
dc.subject.emtreeUnclassified drugen_US
dc.subject.emtreeAdsorptionen_US
dc.subject.emtreeAqueous solutionen_US
dc.subject.emtreeArticleen_US
dc.subject.emtreeChemical reactionen_US
dc.subject.emtreeConcentration (parameters)en_US
dc.subject.emtreeDesorptionen_US
dc.subject.emtreeDiffusionen_US
dc.subject.emtreeElectron spin resonanceen_US
dc.subject.emtreeEnthalpyen_US
dc.subject.emtreeEntropyen_US
dc.subject.emtreeHeavy metal removalen_US
dc.subject.emtreeIsothermen_US
dc.subject.emtreeKineticsen_US
dc.subject.emtreeMagnetic fielden_US
dc.subject.emtreeMagnetismen_US
dc.subject.emtreePhen_US
dc.subject.emtreePolymerizationen_US
dc.subject.emtreeScanning electron microscopyen_US
dc.subject.emtreeSynthesisen_US
dc.subject.emtreeTemperatureen_US
dc.subject.emtreeThermodynamicsen_US
Appears in Collections:PubMed
Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Kara_ve_Demirbel_2012.pdf507.78 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons