Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25793
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSucky, Eric-
dc.date.accessioned2022-04-15T07:02:53Z-
dc.date.available2022-04-15T07:02:53Z-
dc.date.issued2012-
dc.identifier.citationAksoy, A. vd. (2012). "A decision support system for demand forecasting in the clothing industry". International Journal of Clothing Science and Technology, 24(4), 221-236.en_US
dc.identifier.issn0955-6222-
dc.identifier.issn1758-5953-
dc.identifier.urihttps://doi.org/10.1108/09556221211232829-
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/09556221211232829/full/html-
dc.identifier.urihttp://hdl.handle.net/11452/25793-
dc.description.abstractPurpose - Demand forecasting in the clothing industry is very complex due to the existence of a wide range of product references and the lack of historical sales data. To the authors' knowledge, there is an inadequate number of literature studies to forecast the demand with the adaptive network based fuzzy inference system for the clothing industry. The purpose of this paper is to construct a decision support system for demand forecasting in the clothing industry. Design/methodology/approach - The adaptive-network-based fuzzy inference system (ANFIS) is used for forecasting demand in the clothing industry. Findings - The results of the proposed study showed that an ANFIS-based demand forecasting system can help clothing manufacturers to forecast demand more accurately, effectively and simply. Originality/value - In this study, the demand is forecast in terms of clothing manufacturers by using ANFIS. ANFIS is a new technique for demand forecasting, it combines the learning capability of the neural networks and the generalization capability of the fuzzy logic. The input and output criteria are determined based on clothing manufacturers' requirements and via literature research, and the forecasting horizon is about one month. The study includes the real life application of the proposed system and the proposed system is tested by using real demand values for clothing manufacturers.en_US
dc.language.isoenen_US
dc.publisherEmerald Group Publishingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMaterials scienceen_US
dc.subjectDemand forecastingen_US
dc.subjectClothing manufactureren_US
dc.subjectNeuro-fuzzy techniquesen_US
dc.subjectClothingen_US
dc.subjectArtificial neural-networksen_US
dc.subjectSupply chainen_US
dc.subjectIntegrationen_US
dc.subjectManagementen_US
dc.subjectImpacten_US
dc.titleA decision support system for demand forecasting in the clothing industryen_US
dc.typeArticleen_US
dc.identifier.wos000308902800004tr_TR
dc.identifier.scopus2-s2.0-84864453354tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-2971-2701tr_TR
dc.identifier.startpage221tr_TR
dc.identifier.endpage236tr_TR
dc.identifier.volume24tr_TR
dc.identifier.issue4tr_TR
dc.relation.journalInternational Journal of Clothing Science and Technologyen_US
dc.contributor.buuauthorAksoy, Aslı-
dc.contributor.buuauthorÖztürk, Nursel-
dc.contributor.researcheridAAG-9336-2021tr_TR
dc.contributor.researcheridAAG-9235-2021tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosMaterials science, textilesen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid35221094400tr_TR
dc.contributor.scopusid7005688805tr_TR
dc.subject.scopusSales Forecasting; Fast Fashion; Retailen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.