Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25804
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-04-15T11:24:33Z-
dc.date.available2022-04-15T11:24:33Z-
dc.date.issued2010-03-
dc.identifier.citationÖzalp, A. A. (2010). "Combined effects of pipe diameter, Reynolds number and wall heat flux and on flow, heat transfer and second-law characteristics of laminar-transitional micro-pipe flows". Entropy, 12(3), 445-479.en_US
dc.identifier.issn1099-4300-
dc.identifier.urihttps://doi.org/10.3390/e12030445-
dc.identifier.urihttps://www.mdpi.com/1099-4300/12/3/445-
dc.identifier.urihttp://hdl.handle.net/11452/25804-
dc.description.abstractFluid flow, heat transfer and entropy generation characteristics of micro-pipes are investigated computationally by considering the simultaneous effects of pipe diameter, wall heat flux and Reynolds number in detail. Variable fluid property continuity, Navier-Stokes and energy equations are numerically handled for wide ranges of pipe diameter (d = 0.50-1.00 mm), wall heat flux (q '' = 1000-2000 W/m(2)) and Reynolds number (Re = 1 - 2000), where the relative roughness is kept constant at epsilon/d = 0.001 in the complete set of the scenarios considered. Computations indicated slight shifts in velocity profiles from the laminar character at Re = 500 with the corresponding shape factor (H) and intermittency values (gamma) of H = 3.293 -> 3.275 and gamma = 0.041 -> 0.051 (d = 1.00 -> 0.50 mm). Moreover, the onset of transition was determined to move down to Re-tra = 1,656, 1,607, 1,491, 1,341 and 1,272 at d = 1.00, 0.90, 0.75, 0.60 and 0.50 mm, respectively. The impacts of pipe diameter on friction mechanism and heat transfer rates are evaluated to become more significant at high Reynolds numbers, resulting in the rise of energy loss data at the identical conditions as well. In cases with low pipe diameter and high Reynolds number, wall heat flux is determined to promote the magnitude of local thermal entropy generation rates. Local Bejan numbers are inspected to rise with wall heat flux at high Reynolds numbers, indicating that the elevating role of wall heat flux on local thermal entropy generation is dominant to the suppressing function of Reynolds number on local thermal entropy generation. Cross-sectional total entropy generation is computed to be most influenced by pipe diameter at high wall heat flux and low Reynolds numbers.en_US
dc.description.sponsorshipSlovenia-Croatia Cooperation in Science and Technologyen_US
dc.description.sponsorshipMinistry of Science, Education and Sports, Republic of Croatia (177-1770495-0476)en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMicro-pipeen_US
dc.subjectFriction coefficienten_US
dc.subjectHeat transferen_US
dc.subjectEntropy generationen_US
dc.subjectSurface-roughnessen_US
dc.subjectForced-convectionen_US
dc.subjectNumerical analysisen_US
dc.subjectPressure dropen_US
dc.subjectMicrochannelsen_US
dc.subjectFrictionen_US
dc.subjectEnergyen_US
dc.subjectChannelsen_US
dc.subjectDucten_US
dc.subjectPhysicsen_US
dc.titleCombined effects of pipe diameter, Reynolds number and wall heat flux and on flow, heat transfer and second-law characteristics of laminar-transitional micro-pipe flowsen_US
dc.typeArticleen_US
dc.identifier.wos000275934000010tr_TR
dc.identifier.scopus2-s2.0-77953490375tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-4976-9027tr_TR
dc.identifier.startpage445tr_TR
dc.identifier.endpage479tr_TR
dc.identifier.volume12tr_TR
dc.identifier.issue3tr_TR
dc.relation.journalEntropyen_US
dc.contributor.buuauthorÖzalp, A. Alper-
dc.contributor.researcheridABI-6888-2020tr_TR
dc.subject.wosPhysics, multidisciplinaryen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid6506131689tr_TR
dc.subject.scopusKnudsen Flow; Microchannels; Brinkman Numberen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Özalp_2010.pdf446.66 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons