Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25879
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-04-20T06:30:14Z-
dc.date.available2022-04-20T06:30:14Z-
dc.date.issued2002-08-
dc.identifier.citationÖzalp, A. A. ve Umur, H. (2002). "Flow and heat transfer measurements in laminar and turbulent convex surface boundary layers". International Communications in Heat and Mass Transfer, 29(6), 841-851.en_US
dc.identifier.issn0735-1933-
dc.identifier.urihttps://doi.org/10.1016/S0735-1933(02)00374-3-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0735193302003743-
dc.identifier.urihttp://hdl.handle.net/11452/25879-
dc.description.abstractConvex surface boundary layers have been experimentally investigated in a low speed wind tunnel, in the presence of pressure gradients (k) of -3.6x10(-6)less than or equal tokless than or equal to+3.6x10(-6) for laminar and -0.6x10(-6)less than or equal tokless than or equal to+0.6x10(-6) for turbulent flows. Flow and heat transfer measurements showed that stabilising effects of favourable pressure gradients caused thinner boundary layers, fuller velocity profiles and corresponding higher heat transfer rates. Downstream laminar and turbulent heat transfer measurements were below the flat plate laminar analytical solution and turbulent correlation by 54.2% and 25% respectively. It was also found that turbulent flow caused a heat transfer augmentation of 56.1% above the laminar values. Streamwise heat transfer variations, both in laminar and turbulent flows, appeared to be more affected by Reynolds number (Re-x) than streamwise pressure gradient (k(x)). The mild pressure gradient of k=2.0x10(-6) increased the laminar heat transfer rates by 10.4%, whereas similar augmentation (11.8%) were recorded at k=0.4x10(-6) for turbulent now, showing the significance of pressure gradients in turbulent flows. Furthermore by the new empirical equations, experimental flow and heat transfer parameters can be estimated with a precision of better than 6.8%.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStraighten_US
dc.subjectThermodynamicsen_US
dc.subjectMechanicsen_US
dc.titleFlow and heat transfer measurements in laminar and turbulent convex surface boundary layersen_US
dc.typeArticleen_US
dc.identifier.wos000178280100012tr_TR
dc.identifier.scopus2-s2.0-0036699389tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi.tr_TR
dc.contributor.orcid0000-0002-4976-9027tr_TR
dc.identifier.startpage841tr_TR
dc.identifier.endpage851tr_TR
dc.identifier.volume29tr_TR
dc.identifier.issue6tr_TR
dc.relation.journalInternational Communications In Heat And Mass Transferen_US
dc.contributor.buuauthorÖzalp, A. Alper-
dc.contributor.buuauthorUmur, Habib-
dc.contributor.researcheridABI-6888-2020tr_TR
dc.subject.wosThermodynamicsen_US
dc.subject.wosMechanicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ4en_US
dc.contributor.scopusid6506131689tr_TR
dc.contributor.scopusid6602945164tr_TR
dc.subject.scopusTurbulent Boundary Layer; Reynolds Stress; Open Channel Flowen_US
dc.subject.emtreePressure gradientsen_US
dc.subject.emtreeHeat transferen_US
dc.subject.emtreeReynolds numberen_US
dc.subject.emtreeTurbulent flowen_US
dc.subject.emtreeWind tunnelsen_US
dc.subject.emtreeBoundary layersen_US
dc.subject.emtreeBoundary layeren_US
dc.subject.emtreeTurbulenceen_US
dc.subject.emtreeLaminar flowen_US
dc.subject.emtreeMeasurement methoden_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.