Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25901
Title: On the Diophantine Equation x(2) 5(a) . 11(b) = y(n)
Authors: Tzanakis, Nikos
Soydan, Gökhan
Kaczorowski, J.
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
0000-0002-0700-5774
Cangül, İsmail Naci
Demirci, Musa
J-3505-2017
57189022403
23566581100
Keywords: Exponential diophantine equation
S-integral points of an elliptic curve
Thue-Mahler equation
Lucas sequence
Linear form in logarithms of algebraic numbers
Power values
Forms
Mathematics
Issue Date: 2010
Publisher: Wydawnictwo Naukowe
Citation: Cangül, İ. N. vd. (2010). "On The Diophantine Equation x(2) 5(a) . 11(b) = y(n)". ed. J. Kaczorowski. Functiones et Approximatio: Commentarii Mathematici, 43, Part 2, 209-225.
Abstract: We give the complete solution (n, a, b, x, y) of the title equation when gcd(x,y) = 1, except for the case when xab is odd. Our main result is Theorem 1.
URI: https://projecteuclid.org/journals/functiones-et-approximatio-commentarii-mathematici/volume-43/issue-2/On-the-diophantine-equation-x25acdot-11byn/10.7169/facm/1291903397.full
http://hdl.handle.net/11452/25901
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Cangül_vd_2010.pdf546.83 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.