Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/25961
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBayram, Bengü-
dc.contributor.authorÖztürk, Günay-
dc.contributor.authorUgail, Hassan-
dc.contributor.authorEarnshaw, R. A.-
dc.contributor.authorQahwaji, R. S. R.-
dc.contributor.authorWillis, P. J.-
dc.date.accessioned2022-04-21T11:51:00Z-
dc.date.available2022-04-21T11:51:00Z-
dc.date.issued2009-
dc.identifier.citationArslan, K. vd. (2009). "On spherical product surfaces in E3". ed. Hassan Ugail. vd. 2009 International Conference on Cyberworlds, 132-137.en_US
dc.identifier.isbn978-1-4244-4864-7-
dc.identifier.urihttps://doi.org/10.1109/CW.2009.64-
dc.identifier.urihttps://ieeexplore.ieee.org/document/5279659-
dc.identifier.urihttp://hdl.handle.net/11452/25961-
dc.descriptionBu çalışma, 07-11 Eylül 2009 tarihleri arasında Bradford[İngiltere]’da düzenlenen International Conference on Cyberworlds (CW 2009)’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractIn the present study we consider spherical product surfaces X = alpha circle times beta of two 2D curves in E-3. We prove that if a spherical product surface patch X = alpha circle times beta has vanishing Gaussian curvature K (i.e. a flat surface) then either alpha or beta is a straight line. Further, we prove that if alpha(u) is a straight line and beta(v) is a 2D curve then the spherical product is a non-minimal and flat surface. We also prove that if beta(v) is a straight line passing through origin and alpha(u) is any 2D curve (which is not a line) then the spherical product is both minimal and flat. We also give some examples of spherical product surface patches with potential applications to visual cyberworlds.en_US
dc.description.sponsorshipIEEE Comp Socen_US
dc.description.sponsorshipACMen_US
dc.description.sponsorshipEurographicsen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFunction based geometry modellingen_US
dc.subjectMinimal surfacesen_US
dc.subjectSpherical product surfaceen_US
dc.subjectRangeen_US
dc.subjectSuperquadrisen_US
dc.subjectModelsen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectRoboticsen_US
dc.subjectSpheresen_US
dc.subjectCyberworldsen_US
dc.subjectFlat surfacesen_US
dc.subjectGaussian curvaturesen_US
dc.subjectMinimal surfacesen_US
dc.subjectPotential applicationsen_US
dc.subjectProduct surfaceen_US
dc.subjectStraight linesen_US
dc.subjectTwo dimensionalen_US
dc.titleOn spherical product surfaces in E3en_US
dc.typeProceedings Paperen_US
dc.identifier.wos000274326100019tr_TR
dc.identifier.scopus2-s2.0-72349094419tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0001-5861-0184tr_TR
dc.contributor.orcid0000-0002-1440-7050tr_TR
dc.identifier.startpage132tr_TR
dc.identifier.endpage137tr_TR
dc.relation.journal2009 International Conference on Cyberworldsen_US
dc.contributor.buuauthorArslan, Kadri-
dc.contributor.buuauthorBulca, Betül-
dc.contributor.researcheridAAG-8775-2021tr_TR
dc.contributor.researcheridAAG-7693-2021tr_TR
dc.relation.collaborationYurt içitr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosComputer science, information systemsen_US
dc.subject.wosComputer science, theory & methodsen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosRoboticsen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid6603079141tr_TR
dc.contributor.scopusid35226209600tr_TR
dc.subject.scopusPlant Morphology; Botanists; Metaheuristicsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.