Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/26025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKinnunen, Tomi H.-
dc.contributor.authorSaeidi, Rahim-
dc.contributor.authorPohjalainen, Jouni-
dc.contributor.authorAlku, Paavo-
dc.contributor.authorSandberg, Johan-
dc.contributor.authorHansson-Sandsten, Maria-
dc.date.accessioned2022-04-25T07:39:51Z-
dc.date.available2022-04-25T07:39:51Z-
dc.date.issued2012-
dc.identifier.citationHanilci, C. vd. (2012). "Comparing spectrum estimators in speaker verification under additive noise degradation". International Conference on Acoustics Speech and Signal Processing ICASSP, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4769-4772.en_US
dc.identifier.isbn978-1-4673-0046-9-
dc.identifier.issn1520-6149-
dc.identifier.urihttps://doi.org/10.1109/ICASSP.2012.6288985-
dc.identifier.urihttps://ieeexplore.ieee.org/document/6288985-
dc.identifier.urihttp://hdl.handle.net/11452/26025-
dc.descriptionBu çalışma, 25-30 Mart 2012 tarihleri arasında Kyoto[Japonya]’da düzenlenen IEEE International Conference on Acoustics, Speech and Signal Processing’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractDifferent short-term spectrum estimators for speaker verification under additive noise are considered. Conventionally, mel-frequency cepstral coefficients (MFCCs) are computed from discrete Fourier transform (DFT) spectra of windowed speech frames. Recently, linear prediction (LP) and its temporally weighted variants have been substituted as the spectrum analysis method in speech and speaker recognition. In this paper, 12 different short-term spectrum estimation methods are compared for speaker verification under additive noise contamination. Experimental results conducted on NIST 2002 SRE show that the spectrum estimation method has a large effect on recognition performance and stabilized weighted LP (SWLP) and minimum variance distortionless response (MVDR) methods yield approximately 7 % and 8 % relative improvements over the standard DFT method at -10 dB SNR level of factory and babble noises, respectively in terms of equal error rate (EER).en_US
dc.description.sponsorshipInst Elect & Elect Engineers, Signal Processing Socen_US
dc.description.sponsorshipIEEEen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAcousticsen_US
dc.subjectEngineeringen_US
dc.subjectSpectrum estimationen_US
dc.subjectSpeaker verificationen_US
dc.subjectWeighted linear predictionen_US
dc.subjectSpeechen_US
dc.subjectRecognitionen_US
dc.subjectAcoustic noiseen_US
dc.subjectAdditive noiseen_US
dc.subjectDiscreteen_US
dc.subjectSignal processingen_US
dc.subjectSpectrum analysisen_US
dc.subjectBabble noiseen_US
dc.subjectDft methoden_US
dc.subjectEqual error rateen_US
dc.subjectLinear predictionen_US
dc.subjectMel-frequency cepstral coefficientsen_US
dc.subjectMinimum variance distortionless responseen_US
dc.subjectNoise contaminationen_US
dc.subjectNoise degradationsen_US
dc.subjectRecognition performanceen_US
dc.subjectSpeaker recognitionen_US
dc.subjectFourier transformsen_US
dc.subjectSpectrum estimatorsen_US
dc.subjectSpeech framesen_US
dc.subjectSpeech recognitionen_US
dc.titleComparing spectrum estimators in speaker verification under additive noise degradationen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000312381404210tr_TR
dc.identifier.scopus2-s2.0-84867590081tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.startpage4769tr_TR
dc.identifier.endpage4772tr_TR
dc.relation.journalInternational Conference on Acoustics Speech and Signal Processing ICASSP, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)en_US
dc.contributor.buuauthorHanilci, Cemal-
dc.contributor.buuauthorErtaş, Figen-
dc.contributor.researcheridAAH-4188-2021tr_TR
dc.contributor.researcheridS-4967-2016tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosAcousticsen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid35781455400tr_TR
dc.contributor.scopusid24724154500tr_TR
dc.subject.scopusSpeaker Verification; Language Recognition; Utteranceen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Hanilci_vd_2012.pdf306.62 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons