Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/27020
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-06-10T06:18:04Z-
dc.date.available2022-06-10T06:18:04Z-
dc.date.issued2015-03-
dc.identifier.citationKurtulmuş, F. ve Ünal, H. (2015). "Discriminating rapeseed varieties using computer vision and machine learning". Expert Systems with Applications, 42(4), 1880-1891.en_US
dc.identifier.issn0957-4174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2014.10.003-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417414006265-
dc.identifier.urihttp://hdl.handle.net/11452/27020-
dc.description.abstractRapeseed is widely cultivated throughout the world for the production of animal feed, vegetable fat for human consumption, and biodiesel. Since the seeds are evaluated in many areas for sowing and oilseed processing, they must be identified quickly and accurately for selection of a correct variety. An affordable method based on computer vision and machine learning was proposed to classify the seven rapeseed varieties. Different types of feature sets, feature models, and machine learning classifiers were investigated to obtain the best predictive model for rapeseed classification. The training and test sets were used to tune the model parameters during the training epochs by varying the complexity of the predictive models with grid-search and K-fold cross validation. After obtaining optimized models for each level of complexity, a dedicated validation set was used to validate predictive models. The developed computer vision system provided an overall accuracy rate of 99.24% for the best predictive model in discriminating rapeseed variety.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine learningen_US
dc.subjectRapeseeden_US
dc.subjectVariety discriminationen_US
dc.subjectColor texture featuresen_US
dc.subjectMechanical-propertiesen_US
dc.subjectClassificationen_US
dc.subjectIdentificationen_US
dc.subjectRecognitionen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectOperations research & management scienceen_US
dc.subjectArtificial intelligenceen_US
dc.subjectLearning systemsen_US
dc.subjectOilseedsen_US
dc.subjectComputer vision systemen_US
dc.subjectLearning classifiersen_US
dc.subjectOil-seed processingen_US
dc.subjectOverall accuraciesen_US
dc.subjectPredictive modelingen_US
dc.subjectPredictive modelsen_US
dc.subjectRapeseeden_US
dc.subjectVariety discriminationsen_US
dc.subjectComputer visionen_US
dc.titleDiscriminating rapeseed varieties using computer vision and machine learningen_US
dc.typeArticleen_US
dc.identifier.wos000347579500011tr_TR
dc.identifier.scopus2-s2.0-84910662280tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.tr_TR
dc.identifier.startpage1880tr_TR
dc.identifier.endpage1891tr_TR
dc.identifier.volume42tr_TR
dc.identifier.issue4tr_TR
dc.relation.journalExpert Systems with Applicationsen_US
dc.contributor.buuauthorKurtulmuş, Ferhat-
dc.contributor.buuauthorÜnal, Halil-
dc.contributor.researcheridR-8053-2016tr_TR
dc.contributor.researcheridAAH-4410-2021tr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosOperations research & management scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid15848202900tr_TR
dc.contributor.scopusid55807866400tr_TR
dc.subject.scopusCorn Ears; Seed; Computer Visionen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.