Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/27311
Title: Upper bounds for the level of normal subgroups of Hecke groups
Authors: Simos, T. E.
Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
0000-0002-0700-5774
0000-0002-0700-5774
Demirci, Musa
Yurttaş, Aysun
Cangül, İsmail Naci
ABA-6206-2020
J-3505-2017
AAG-8470-2021
23566581100
37090056000
57189022403
Keywords: Mathematics
Hecke groups
Level
Parabolic class number
Riemann surface
Automorphisms
Number
Issue Date: 2011
Publisher: Amer Inst Pyhsics
Citation: Demirci, M. vd. (2011). "Upper bounds for the level of normal subgroups of Hecke groups". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 337-340.
Abstract: In [4], Greenberg showed that n <= 6t(3) so that mu - nt <= 6t(4) for a normal subgroup N of level n and index mu having t parabolic classes in the modular group Gamma. Accola, [1], improved these to n <= 6t(2) always and n <= t(2) if Gamma/N is not abelian. In this work we generalise these results to Hecke groups. We get results between three parameters of a normal subgroup, i.e. the index mu, the level n and the parabolic class number t. We deal with the case q = 4, and then obtain the generalisation to other q. Two main problems here are the calculation of the number of normal subgroups and the determination of the bounds on the level n for a given t.
Description: Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)' da bildiri olarak sunulmuştur.
URI: https://doi.org/10.1063/1.3636733
https://aip.scitation.org/doi/10.1063/1.3636733
http://hdl.handle.net/11452/27311
ISSN: 0094-243X
Appears in Collections:Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.