Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/27311
Title: | Upper bounds for the level of normal subgroups of Hecke groups |
Authors: | Simos, T. E. Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. 0000-0002-0700-5774 0000-0002-0700-5774 Demirci, Musa Yurttaş, Aysun Cangül, İsmail Naci ABA-6206-2020 J-3505-2017 AAG-8470-2021 23566581100 37090056000 57189022403 |
Keywords: | Mathematics Hecke groups Level Parabolic class number Riemann surface Automorphisms Number |
Issue Date: | 2011 |
Publisher: | Amer Inst Pyhsics |
Citation: | Demirci, M. vd. (2011). "Upper bounds for the level of normal subgroups of Hecke groups". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 337-340. |
Abstract: | In [4], Greenberg showed that n <= 6t(3) so that mu - nt <= 6t(4) for a normal subgroup N of level n and index mu having t parabolic classes in the modular group Gamma. Accola, [1], improved these to n <= 6t(2) always and n <= t(2) if Gamma/N is not abelian. In this work we generalise these results to Hecke groups. We get results between three parameters of a normal subgroup, i.e. the index mu, the level n and the parabolic class number t. We deal with the case q = 4, and then obtain the generalisation to other q. Two main problems here are the calculation of the number of normal subgroups and the determination of the bounds on the level n for a given t. |
Description: | Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)' da bildiri olarak sunulmuştur. |
URI: | https://doi.org/10.1063/1.3636733 https://aip.scitation.org/doi/10.1063/1.3636733 http://hdl.handle.net/11452/27311 |
ISSN: | 0094-243X |
Appears in Collections: | Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.