Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/27329
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | İkikardeş, Nazlı Y. | - |
dc.contributor.author | Simos, T. E. | - |
dc.date.accessioned | 2022-06-21T07:06:22Z | - |
dc.date.available | 2022-06-21T07:06:22Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | Demirci, M. vd. (2011). "The minimal polynomials of 2cos(π/2k) over the rationals". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 325-328. | en_US |
dc.identifier.issn | 0094-243X | - |
dc.identifier.uri | https://doi.org/10.1063/1.3636731 | - |
dc.identifier.uri | https://aip.scitation.org/doi/abs/10.1063/1.3636731 | - |
dc.identifier.uri | http://hdl.handle.net/11452/27329 | - |
dc.description | Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur. | tr_TR |
dc.description.abstract | The number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups of the first kind, and in the study of regular polyhedra. Here we obtained the minimal polynomial of this number by means of the better known Chebycheff polynomials and the set of roots on the extension Q(lambda(q)). We follow some kind of inductive method on the number q. The minimal polynomial is obtained for even q. | en_US |
dc.description.sponsorship | European Soc Computat Methods Sci & Engn (ESCMSE) | en_US |
dc.description.sponsorship | R M Santilli Fdn | en_US |
dc.description.sponsorship | ACC I S | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Pyhsics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Hecke groups | en_US |
dc.subject | Roots of unity | en_US |
dc.subject | Chebycheff polynomials | en_US |
dc.subject | Minimal polynomial | en_US |
dc.title | The minimal polynomials of 2cos(π/2k) over the rationals | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.wos | 000302239800080 | tr_TR |
dc.identifier.scopus | 2-s2.0-81855203308 | tr_TR |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. | tr_TR |
dc.relation.bap | 2008/54 | tr_TR |
dc.relation.bap | 2008/31 | tr_TR |
dc.relation.bap | 2006/40 | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.identifier.startpage | 325 | tr_TR |
dc.identifier.endpage | 328 | tr_TR |
dc.identifier.volume | 1389 | tr_TR |
dc.relation.journal | AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics | en_US |
dc.contributor.buuauthor | Demirci, Musa | - |
dc.contributor.buuauthor | Özgür, Birsen | - |
dc.contributor.buuauthor | Cangül, İsmail Naci | - |
dc.contributor.researcherid | ABA-6206-2020 | tr_TR |
dc.contributor.researcherid | ABI-4127-2020 | tr_TR |
dc.contributor.researcherid | J-3505-2017 | tr_TR |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.indexed.wos | CPCI | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 23566581100 | tr_TR |
dc.contributor.scopusid | 54403501400 | tr_TR |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.subject.scopus | Hecke Groups; Modular Forms; Congruence Subgroups | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.