Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/27335
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-06-21T11:33:28Z | - |
dc.date.available | 2022-06-21T11:33:28Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Yilmaz, E. ve Kılıkçıer, Ç. (2013). "Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree". Computational and Mathematical Methods in Medicine, 2013. | en_US |
dc.identifier.issn | 1748-670X | - |
dc.identifier.issn | 1748-6718 | - |
dc.identifier.uri | https://doi.org/10.1155/2013/487179 | - |
dc.identifier.uri | https://www.hindawi.com/journals/cmmm/2013/487179/ | - |
dc.identifier.uri | http://hdl.handle.net/11452/27335 | - |
dc.description.abstract | We use least squares support vector machine (LS-SVM) utilizing a binary decision tree for classification of cardiotocogram to determine the fetal state. The parameters of LS-SVM are optimized by particle swarm optimization. The robustness of the method is examined by running 10-fold cross-validation. The performance of the method is evaluated in terms of overall classification accuracy. Additionally, receiver operation characteristic analysis and cobweb representation are presented in order to analyze and visualize the performance of the method. Experimental results demonstrate that the proposed method achieves a remarkable classification accuracy rate of 91.62%. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Hindawi | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematical & computational biology | en_US |
dc.subject | Heart-rate | en_US |
dc.subject | Classification | en_US |
dc.subject | Performance | en_US |
dc.subject | System | en_US |
dc.subject | Risk | en_US |
dc.subject | Binary trees | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Particle swarm optimization (PSO) | en_US |
dc.subject | 10-fold cross-validation | en_US |
dc.subject | Binary decision trees | en_US |
dc.subject | Cardiotocogram | en_US |
dc.subject | Classification accuracy | en_US |
dc.subject | Least squares support vector machines | en_US |
dc.subject | Operation characteristic | en_US |
dc.subject | Support vector machines | en_US |
dc.subject.mesh | Artificial intelligence | en_US |
dc.subject.mesh | Cardiotocography | en_US |
dc.subject.mesh | Decision support systems, clinical | en_US |
dc.subject.mesh | Decision trees | en_US |
dc.subject.mesh | Female | en_US |
dc.subject.mesh | Humans | en_US |
dc.subject.mesh | Least-squares analysis | en_US |
dc.subject.mesh | Pregnancy | en_US |
dc.subject.mesh | ROC curve | en_US |
dc.subject.mesh | Support vector machines | en_US |
dc.title | Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000326751100001 | tr_TR |
dc.identifier.scopus | 2-s2.0-84888869975 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0001-7933-1643 | tr_TR |
dc.identifier.volume | 2013 | tr_TR |
dc.relation.journal | Computational and Mathematical Methods in Medicine | en_US |
dc.contributor.buuauthor | Yılmaz, Ersen | - |
dc.contributor.buuauthor | Kılıkçıer, Çaǧlar | - |
dc.contributor.researcherid | G-3554-2013 | tr_TR |
dc.contributor.researcherid | AAH-3031-2021 | tr_TR |
dc.identifier.pubmed | 24288574 | tr_TR |
dc.subject.wos | Mathematical & Computational Biology | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.pubmed | PubMed | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 56965095300 | tr_TR |
dc.contributor.scopusid | 55946623600 | tr_TR |
dc.subject.scopus | Cardiotocography; Fetal Heart Rate; Pregnancy | en_US |
dc.subject.emtree | Article | en_US |
dc.subject.emtree | Cardiotocograph | en_US |
dc.subject.emtree | Cardiotocography | en_US |
dc.subject.emtree | Classification algorithm | en_US |
dc.subject.emtree | Clinical evaluation | en_US |
dc.subject.emtree | Decision tree | en_US |
dc.subject.emtree | Diagnostic accuracy | en_US |
dc.subject.emtree | Fetus | en_US |
dc.subject.emtree | Fetus development | en_US |
dc.subject.emtree | Human | en_US |
dc.subject.emtree | Image analysis | en_US |
dc.subject.emtree | Intelligence | en_US |
dc.subject.emtree | Learning algorithm | en_US |
dc.subject.emtree | Least square support vector machine | en_US |
dc.subject.emtree | Machine learning | en_US |
dc.subject.emtree | Nonhuman | en_US |
dc.subject.emtree | Parameters | en_US |
dc.subject.emtree | Particle swarm optimization | en_US |
dc.subject.emtree | Process optimization | en_US |
dc.subject.emtree | Receiver operating characteristic | en_US |
dc.subject.emtree | Support vector machine | en_US |
dc.subject.emtree | Artificial intelligence | en_US |
dc.subject.emtree | Cardiotocography | en_US |
dc.subject.emtree | Decision support system | en_US |
dc.subject.emtree | Decision tree | ten_US |
dc.subject.emtree | Evaluation study | en_US |
dc.subject.emtree | Female | en_US |
dc.subject.emtree | Pregnancy | en_US |
dc.subject.emtree | Regression analysis | en_US |
dc.subject.emtree | Statistics and numerical data | en_US |
dc.subject.emtree | Support vector machine | en_US |
dc.subject.emtree | Validation study | en_US |
dc.subject.emtree | Statistics | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Yılmaz_Kılıkçıer_2013.pdf | 1.37 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License