Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28305
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKavdır, İsmail-
dc.date.accessioned2022-08-22T11:31:17Z-
dc.date.available2022-08-22T11:31:17Z-
dc.date.issued2014-11-15-
dc.identifier.citationKurtulmuş, F. ve Kavdır, İ. (2014). "Detecting corn tassels using computer vision and support vector machines". Expert Systems with Applications, 41(16), 7390-7397.en_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2014.06.013-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417414003546-
dc.identifier.urihttp://hdl.handle.net/11452/28305-
dc.description.abstractAn automated solution for maize detasseling is very important for maize growers who want to reduce production costs. Quality assurance of maize requires constantly monitoring production fields to ensure that only hybrid seed is produced. To achieve this cross-pollination, tassels of female plants have to be removed for ensuring all the pollen for producing the seed crop comes from the male rows. This removal process is called detasseling. Computer vision methods could help positioning the cutting locations of tassels to achieve a more precise detasseling process in a row. In this study, a computer vision algorithm was developed to detect cutting locations of corn tassels in natural outdoor maize canopy using conventional color images and computer vision with a minimum number of false positives. Proposed algorithm used color informations with a support vector classifier for image binarization. A number of morphological operations were implemented to determine potential tassel locations. Shape and texture features were used to reduce false positives. A hierarchical clustering method was utilized to merge multiple detections for the same tassel and to determine the final locations of tassels. Proposed algorithm performed with a correct detection rate of 81.6% for the test set. Detection of maize tassels in natural canopy images is a quite difficult task due to various backgrounds, different illuminations, occlusions, shadowed regions, and color similarities. The results of the study indicated that detecting cut location of corn tassels is feasible using regular color imagesen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSupport vector machineen_US
dc.subjectComputer visionen_US
dc.subjectImage processingen_US
dc.subjectMaize tassel detectionen_US
dc.subjectFeaturesen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectOperations research & management scienceen_US
dc.subjectColoren_US
dc.subjectComputer visionen_US
dc.subjectImage processingen_US
dc.subjectImage retrievalen_US
dc.subjectMathematical morphologyen_US
dc.subjectPlants (botany)en_US
dc.subjectQuality assuranceen_US
dc.subjectAutomated solutionsen_US
dc.subjectComputer vision algorithmsen_US
dc.subjectHierarchical clustering methodsen_US
dc.subjectImage binarizationen_US
dc.subjectMorphological operationsen_US
dc.subjectMultiple detectionen_US
dc.subjectShape and texturesen_US
dc.subjectSupport vector classifiersen_US
dc.subjectSupport vector machinesen_US
dc.titleDetecting corn tassels using computer vision and support vector machinesen_US
dc.typeArticleen_US
dc.identifier.wos000340689700036tr_TR
dc.identifier.scopus2-s2.0-84904191292tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.tr_TR
dc.identifier.startpage7390tr_TR
dc.identifier.endpage7397tr_TR
dc.identifier.volume41tr_TR
dc.identifier.issue16tr_TR
dc.relation.journalExpert Systems with Applicationsen_US
dc.contributor.buuauthorKurtulmuş, Ferhat-
dc.contributor.researcheridR-8053-2016tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosOperations research & management scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid15848202900tr_TR
dc.subject.scopusCrops; Agricultural Machinery and Equipment; Tractorsen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.