Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/28381
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yücel, Eylem | - |
dc.contributor.author | Arık, Sabri | - |
dc.date.accessioned | 2022-08-26T06:27:00Z | - |
dc.date.available | 2022-08-26T06:27:00Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Neyir, Ö. vd. (2015). "A novel condition for robust stability of delayed neural networks". Neural Information Processing, PT III, Lecture Notes in Computer Science, 273-280. | en_US |
dc.identifier.isbn | 978-3-319-26555-1 | - |
dc.identifier.isbn | 978-3-319-26554-4 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-26555-1_31 | - |
dc.identifier.uri | http://hdl.handle.net/11452/28381 | - |
dc.description | Bu çalışma, 9-12 Kasım 2015 tarihleri arasında İstanbul[Türkiye]'da düzenlenen 22. International Conference on Neural Information Processing (ICONIP)'de bildiri olarak sunulmuştur. | tr_TR |
dc.description.abstract | This paper presents a novel sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of delayed neural networks by using the Homomorphic mapping and the Lyapunov stability theorems. An important feature of the obtained result is its low computational complexity as the reported result can be verified by checking some well-known properties of some certain classes of matrices, which simplify the verification of the derived result. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computer science | en_US |
dc.subject | Lyapunov functional | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Stability analysis | en_US |
dc.subject | Asymptotic stability | en_US |
dc.subject | Information science | en_US |
dc.subject | Lyapunov functions | en_US |
dc.subject | Robustness (control systems) | en_US |
dc.subject | Stability | en_US |
dc.subject | Delayed neural networks | en_US |
dc.subject | Equilibrium point | en_US |
dc.subject | Global robust asymptotic stabilities | en_US |
dc.subject | Important features | en_US |
dc.subject | Low computational complexity | en_US |
dc.subject | Lyapunov functionals | en_US |
dc.subject | Lyapunov stability theorem | en_US |
dc.subject | Complex networks | en_US |
dc.title | A novel condition for robust stability of delayed neural networks | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.wos | 000371579800031 | tr_TR |
dc.identifier.scopus | 2-s2.0-84958542309 | tr_TR |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü. | tr_TR |
dc.identifier.startpage | 273 | tr_TR |
dc.identifier.endpage | 280 | tr_TR |
dc.identifier.volume | 9491 | tr_TR |
dc.relation.journal | Neural Information Processing, PT III | en_US |
dc.contributor.buuauthor | Özcan, Neyir | - |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.subject.wos | Computer science, artificial intelligence | en_US |
dc.subject.wos | Computer science, theory & methods | en_US |
dc.indexed.wos | CPCIS | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 7003726676 | tr_TR |
dc.subject.scopus | BAM Neural Network; Time Lag; Bidirectional Associative Memory | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.