Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28396
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahin, Recep-
dc.contributor.authorİkikardeş, Sebahattin-
dc.contributor.authorKoruoğlu, Özden-
dc.date.accessioned2022-08-26T12:12:02Z-
dc.date.available2022-08-26T12:12:02Z-
dc.date.issued2010-
dc.identifier.citationŞahin, R. vd. (2010). "The connections between continued fraction representations of units and certain hecke groups". Bulletin of the Malaysian Mathematical Sciences Society, 33(2), 205-210.en_US
dc.identifier.issn0126-6705-
dc.identifier.urihttp://hdl.handle.net/11452/28396-
dc.description.abstractLet lambda = root D where D is a square free integer such that D = m(2)+1 for m = 1,3, 4, 5,..., or D = n(2) - 1 form = 2, 3, 4, 5,.... Also, let H(lambda) be the Hecke group associated to A. In this paper, we show that the units in H(lambda) are infinite pure periodic lambda-continued fraction for a certain set of integer D, and hence can not be cusp points.en_US
dc.language.isoenen_US
dc.publisherMalaysian Mathematical Sciences Socen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHecke groupen_US
dc.subjectFuchsian groupen_US
dc.subjectContinued fractionen_US
dc.subjectCusp pointen_US
dc.subjectPrincipal congruence subgroupsen_US
dc.subjectMathematicsen_US
dc.titleThe connections between continued fraction representations of units and certain hecke groupsen_US
dc.typeArticleen_US
dc.identifier.wos000277678900004tr_TR
dc.identifier.scopus2-s2.0-77953037019tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage205tr_TR
dc.identifier.endpage210tr_TR
dc.identifier.volume33tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalBulletin of the Malaysian Mathematical Sciences Societyen_US
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridJ-3505-2017tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosMathematicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ2en_US
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusHecke Groups; Modular Forms; Graphen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.