Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/28604
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-09-09T08:22:23Z | - |
dc.date.available | 2022-09-09T08:22:23Z | - |
dc.date.issued | 2015-12-30 | - |
dc.identifier.citation | İnkaya, T. (2015). "A parameter-free similarity graph for spectral clustering". Expert Systems with Applications, 42(24), 9489-9498. | en_US |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.issn | 1873-6793 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2015.07.074 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0957417415005345?via%3Dihub | - |
dc.identifier.uri | http://hdl.handle.net/11452/28604 | - |
dc.description.abstract | Spectral clustering is a popular clustering method due to its simplicity and superior performance in the data sets with non-convex clusters. The method is based on the spectral analysis of a similarity graph. Previous studies show that clustering results are sensitive to the selection of the similarity graph and its parameter(s). In particular, when there are data sets with arbitrary shaped clusters and varying density, it is difficult to determine the proper similarity graph and its parameters without a priori information. To address this issue, we propose a parameter-free similarity graph, namely Density Adaptive Neighborhood (DAN). DAN combines distance, density and connectivity information, and it reflects the local characteristics. We test the performance of DAN with a comprehensive experimental study. We compare k-nearest neighbor (KNN), mutual KNN, ε-neighborhood, fully connected graph, minimum spanning tree, Gabriel graph, and DAN in terms of clustering accuracy. We also examine the robustness of DAN to the number of attributes and the transformations such as decimation and distortion. Our experimental study with various artificial and real data sets shows that DAN improves the spectral clustering results, and it is superior to the competing approaches. Moreover, it facilitates the application of spectral clustering to various domains without a priori information. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Spectral clustering | en_US |
dc.subject | Similarity graph | en_US |
dc.subject | K-nearest neighbor | en_US |
dc.subject | Epsilon-neighborhood | en_US |
dc.subject | Fully connected graph | en_US |
dc.subject | Construction | en_US |
dc.subject | Density | en_US |
dc.subject | Computer science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Operations research & management science | en_US |
dc.subject | Clustering algorithms | en_US |
dc.subject | Graph theory | en_US |
dc.subject | Motion compensation | en_US |
dc.subject | Nearest neighbor search | en_US |
dc.subject | Spectrum analysis | en_US |
dc.subject | Adaptive neighborhood | en_US |
dc.subject | Connected graph | en_US |
dc.subject | Connectivity information | en_US |
dc.subject | K nearest neighbor (KNN) | en_US |
dc.subject | K-nearest neighbors | en_US |
dc.subject | Minimum spanning trees | en_US |
dc.subject | Trees (mathematics) | en_US |
dc.title | A parameter-free similarity graph for spectral clustering | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000362857500010 | tr_TR |
dc.identifier.scopus | 2-s2.0-84942333236 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-6260-0162 | tr_TR |
dc.identifier.startpage | 9489 | tr_TR |
dc.identifier.endpage | 9498 | tr_TR |
dc.identifier.volume | 42 | tr_TR |
dc.identifier.issue | 24 | tr_TR |
dc.relation.journal | Expert Systems with Applications | en_US |
dc.contributor.buuauthor | İnkaya, Tülin | - |
dc.contributor.researcherid | AAH-2155-2021 | tr_TR |
dc.subject.wos | Computer science, artificial intelligence | en_US |
dc.subject.wos | Engineering, electrical & electronic | en_US |
dc.subject.wos | Operations research & management science | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 24490728300 | tr_TR |
dc.subject.scopus | Spectral Clustering; Cluster Analysis; Laplacian Matrix | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.