Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/28604
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-09-09T08:22:23Z-
dc.date.available2022-09-09T08:22:23Z-
dc.date.issued2015-12-30-
dc.identifier.citationİnkaya, T. (2015). "A parameter-free similarity graph for spectral clustering". Expert Systems with Applications, 42(24), 9489-9498.en_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2015.07.074-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417415005345?via%3Dihub-
dc.identifier.urihttp://hdl.handle.net/11452/28604-
dc.description.abstractSpectral clustering is a popular clustering method due to its simplicity and superior performance in the data sets with non-convex clusters. The method is based on the spectral analysis of a similarity graph. Previous studies show that clustering results are sensitive to the selection of the similarity graph and its parameter(s). In particular, when there are data sets with arbitrary shaped clusters and varying density, it is difficult to determine the proper similarity graph and its parameters without a priori information. To address this issue, we propose a parameter-free similarity graph, namely Density Adaptive Neighborhood (DAN). DAN combines distance, density and connectivity information, and it reflects the local characteristics. We test the performance of DAN with a comprehensive experimental study. We compare k-nearest neighbor (KNN), mutual KNN, ε-neighborhood, fully connected graph, minimum spanning tree, Gabriel graph, and DAN in terms of clustering accuracy. We also examine the robustness of DAN to the number of attributes and the transformations such as decimation and distortion. Our experimental study with various artificial and real data sets shows that DAN improves the spectral clustering results, and it is superior to the competing approaches. Moreover, it facilitates the application of spectral clustering to various domains without a priori information.en_US
dc.language.isoenen_US
dc.publisherPergamon Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSpectral clusteringen_US
dc.subjectSimilarity graphen_US
dc.subjectK-nearest neighboren_US
dc.subjectEpsilon-neighborhooden_US
dc.subjectFully connected graphen_US
dc.subjectConstructionen_US
dc.subjectDensityen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectOperations research & management scienceen_US
dc.subjectClustering algorithmsen_US
dc.subjectGraph theoryen_US
dc.subjectMotion compensationen_US
dc.subjectNearest neighbor searchen_US
dc.subjectSpectrum analysisen_US
dc.subjectAdaptive neighborhooden_US
dc.subjectConnected graphen_US
dc.subjectConnectivity informationen_US
dc.subjectK nearest neighbor (KNN)en_US
dc.subjectK-nearest neighborsen_US
dc.subjectMinimum spanning treesen_US
dc.subjectTrees (mathematics)en_US
dc.titleA parameter-free similarity graph for spectral clusteringen_US
dc.typeArticleen_US
dc.identifier.wos000362857500010tr_TR
dc.identifier.scopus2-s2.0-84942333236tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0002-6260-0162tr_TR
dc.identifier.startpage9489tr_TR
dc.identifier.endpage9498tr_TR
dc.identifier.volume42tr_TR
dc.identifier.issue24tr_TR
dc.relation.journalExpert Systems with Applicationsen_US
dc.contributor.buuauthorİnkaya, Tülin-
dc.contributor.researcheridAAH-2155-2021tr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosOperations research & management scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid24490728300tr_TR
dc.subject.scopusSpectral Clustering; Cluster Analysis; Laplacian Matrixen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.