Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29084
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-10-13T11:05:34Z | - |
dc.date.available | 2022-10-13T11:05:34Z | - |
dc.date.issued | 2006 | - |
dc.identifier.citation | Küçük, İ. (2006). ''Multilayered perceptron neural networks to compute energy losses in magnetic cores''. Journal of Magnetism and Magnetic Materials, 307(1), 53-61. | en_US |
dc.identifier.issn | 0304-8853 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jmmm.2006.03.043 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0304885306006688 | - |
dc.identifier.uri | http://hdl.handle.net/11452/29084 | - |
dc.description.abstract | This paper presents a new approach based on multilayered perceptrons (MLPs) to compute the specific energy losses of toroidal wound cores built from 3% SiFe 0.27 mm thick M4, 0.1 and 0.08 mm thin gauge electrical steel strips. The MLP has been trained by a back-propagation and extended delta-bar-delta learning algorithm. The results obtained by using the MLP model were compared with a commonly used conventional method. The comparison has shown that the proposed model improved loss estimation with respect to the conventional method. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Materials science | en_US |
dc.subject | Physics | en_US |
dc.subject | Toroidal wound cores | en_US |
dc.subject | Neural network | en_US |
dc.subject | Energy losses | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Magnetic properties | en_US |
dc.subject | Magnetic materials | en_US |
dc.subject | Learning algorithms | en_US |
dc.subject | Energy dissipation | en_US |
dc.subject | Backpropagation | en_US |
dc.subject | Toroidal wounds | en_US |
dc.subject | Multilayered perceptrons (MLP) | en_US |
dc.subject | Delta-bar-delta learnings | en_US |
dc.subject | Multilayer neural networks | en_US |
dc.subject | Toroidal cores | en_US |
dc.title | Multilayered perceptron neural networks to compute energy losses in magnetic cores | en_US |
dc.type | Article | tr_TR |
dc.identifier.wos | 000241144900006 | tr_TR |
dc.identifier.scopus | 2-s2.0-33748449604 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü. | tr_TR |
dc.identifier.startpage | 53 | tr_TR |
dc.identifier.endpage | 61 | tr_TR |
dc.identifier.volume | 307 | tr_TR |
dc.identifier.issue | 1 | tr_TR |
dc.relation.journal | Journal of Magnetism and Magnetic Materials | en_US |
dc.contributor.buuauthor | Küçük, İlker | - |
dc.subject.wos | Physics, condensed matter | en_US |
dc.subject.wos | Materials science, multidisciplinary | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 (Materials science, multidisciplinary) | en_US |
dc.wos.quartile | Q3 (Physics, condensed matter) | en_US |
dc.contributor.scopusid | 6602910810 | tr_TR |
dc.subject.scopus | Silicon Steel; Soft Magnetic Materials; Induction Motors | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
This item is licensed under a Creative Commons License