Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29102
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-10-14T11:08:40Z | - |
dc.date.available | 2022-10-14T11:08:40Z | - |
dc.date.issued | 2013-02 | - |
dc.identifier.citation | Hanilçi, C. ve Ertaş, F. (2013). "Investigation of the effect of data duration and speaker gender on text-independent speaker recognition". Computers and Electrical Engineering, 39(2), 441-452. | en_US |
dc.identifier.issn | 0045-7906 | - |
dc.identifier.issn | 1879-0755 | - |
dc.identifier.uri | https://doi.org/10.1016/j.compeleceng.2012.09.014 | - |
dc.identifier.uri | https://dl.acm.org/doi/10.1016/j.compeleceng.2012.09.014 | - |
dc.identifier.uri | http://hdl.handle.net/11452/29102 | - |
dc.description.abstract | Duration of training/test data has a considerable effect on the performance of a speaker recognition system. In this paper, we analyze the effect of training and test data duration and speaker gender on the performance of speaker recognition systems. Gaussian mixture models-universal background model (GMM-UBM), vector quantization-universal background model (VQ-UBM), support vector machines generalized linear discriminant sequence kernel (SVM-GLDS) and support vector machines with GMM supervectors (GSV-SVM) are the classifiers we use for speaker recognition. Experimental results conducted on NIST 2002 and NIST 2005 speaker recognition evaluation (SRE) databases show that recognition performance breaks down when short utterances are used for training and testing independent from the recognizer (e.g. equal error rate (EER) reduces from 10.33% to 27.86% on NIST 2005) and GSV-SVM system yields higher EER than other methods in the case of using short utterances. It is also shown that recognition accuracy for male speakers are higher than female independent from database and classifier. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computer science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Of-the-art | en_US |
dc.subject | Verification | en_US |
dc.subject | Adaptation | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Face recognition | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Vector quantization | en_US |
dc.subject | Linear discriminants | en_US |
dc.subject | Recognition accuracy | en_US |
dc.subject | Recognition performance | en_US |
dc.subject | Speaker recognition | en_US |
dc.subject | Speaker recognition evaluations | en_US |
dc.subject | Speaker recognition system | en_US |
dc.subject | Text independents | en_US |
dc.subject | Training and testing | en_US |
dc.subject | Speech recognition | en_US |
dc.title | Investigation of the effect of data duration and speaker gender on text-independent speaker recognition | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000318454200026 | tr_TR |
dc.identifier.scopus | 2-s2.0-84876294160 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü. | tr_TR |
dc.identifier.startpage | 441 | tr_TR |
dc.identifier.endpage | 452 | tr_TR |
dc.identifier.volume | 39 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.relation.journal | Computers and Electrical Engineering | en_US |
dc.contributor.buuauthor | Hanilçi, Cemal | - |
dc.contributor.buuauthor | Ertaş, Figen | - |
dc.contributor.researcherid | S-4967-2016 | tr_TR |
dc.contributor.researcherid | AAH-4188-2021 | tr_TR |
dc.subject.wos | Computer science, hardware & architecture | en_US |
dc.subject.wos | Computer science, interdisciplinary applications | en_US |
dc.subject.wos | Engineering, electrical & electronic | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 35781455400 | tr_TR |
dc.contributor.scopusid | 24724154500 | tr_TR |
dc.subject.scopus | Speech Recognition; Language Recognition; Utterance | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.