Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29102
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2022-10-14T11:08:40Z-
dc.date.available2022-10-14T11:08:40Z-
dc.date.issued2013-02-
dc.identifier.citationHanilçi, C. ve Ertaş, F. (2013). "Investigation of the effect of data duration and speaker gender on text-independent speaker recognition". Computers and Electrical Engineering, 39(2), 441-452.en_US
dc.identifier.issn0045-7906-
dc.identifier.issn1879-0755-
dc.identifier.urihttps://doi.org/10.1016/j.compeleceng.2012.09.014-
dc.identifier.urihttps://dl.acm.org/doi/10.1016/j.compeleceng.2012.09.014-
dc.identifier.urihttp://hdl.handle.net/11452/29102-
dc.description.abstractDuration of training/test data has a considerable effect on the performance of a speaker recognition system. In this paper, we analyze the effect of training and test data duration and speaker gender on the performance of speaker recognition systems. Gaussian mixture models-universal background model (GMM-UBM), vector quantization-universal background model (VQ-UBM), support vector machines generalized linear discriminant sequence kernel (SVM-GLDS) and support vector machines with GMM supervectors (GSV-SVM) are the classifiers we use for speaker recognition. Experimental results conducted on NIST 2002 and NIST 2005 speaker recognition evaluation (SRE) databases show that recognition performance breaks down when short utterances are used for training and testing independent from the recognizer (e.g. equal error rate (EER) reduces from 10.33% to 27.86% on NIST 2005) and GSV-SVM system yields higher EER than other methods in the case of using short utterances. It is also shown that recognition accuracy for male speakers are higher than female independent from database and classifier.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectSupport vector machinesen_US
dc.subjectOf-the-arten_US
dc.subjectVerificationen_US
dc.subjectAdaptationen_US
dc.subjectClassification (of information)en_US
dc.subjectFace recognitionen_US
dc.subjectSupport vector machinesen_US
dc.subjectVector quantizationen_US
dc.subjectLinear discriminantsen_US
dc.subjectRecognition accuracyen_US
dc.subjectRecognition performanceen_US
dc.subjectSpeaker recognitionen_US
dc.subjectSpeaker recognition evaluationsen_US
dc.subjectSpeaker recognition systemen_US
dc.subjectText independentsen_US
dc.subjectTraining and testingen_US
dc.subjectSpeech recognitionen_US
dc.titleInvestigation of the effect of data duration and speaker gender on text-independent speaker recognitionen_US
dc.typeArticleen_US
dc.identifier.wos000318454200026tr_TR
dc.identifier.scopus2-s2.0-84876294160tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.startpage441tr_TR
dc.identifier.endpage452tr_TR
dc.identifier.volume39tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalComputers and Electrical Engineeringen_US
dc.contributor.buuauthorHanilçi, Cemal-
dc.contributor.buuauthorErtaş, Figen-
dc.contributor.researcheridS-4967-2016tr_TR
dc.contributor.researcheridAAH-4188-2021tr_TR
dc.subject.wosComputer science, hardware & architectureen_US
dc.subject.wosComputer science, interdisciplinary applicationsen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid35781455400tr_TR
dc.contributor.scopusid24724154500tr_TR
dc.subject.scopusSpeech Recognition; Language Recognition; Utteranceen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.