Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29190
Title: | Second law based thermoeconomic analysis of combined cycle power plants considering the effects of environmental temperature and load variations |
Authors: | Uludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği Bölümü. 0000-0002-6968-6181 0000-0003-2113-4510 Ünver, Ümit Kılıç, Muhsin C-5274-2015 O-2253-2015 15840921000 57202677637 |
Keywords: | Energy & fuels Nuclear science & technology Combined cycle power plants Cost benefit analysis Environmental temperature Combined cycle power plants Cost benefit analysis Exergy Optimization Thermal effects Reversible power Thermal system Thermo-economic model Exergy Optimization Thermal effects Exergoeconomic analysis Generation |
Issue Date: | 2007 |
Publisher: | Wiley |
Citation: | Ünver, Ü. ve Kılıç, M. (2007). "Second law based thermoeconomic analysis of combined cycle power plants considering the effects of environmental temperature and load variations". International Journal of Energy Research, 31(2), 148-157. |
Abstract: | Cost analysis has a significant importance to obtain the optimum marketing price of the product of thermal systems to maximize the benefit and/or minimize the cost. Thus, this paper focuses on the investigation of the magnitude of the change in costs with respect to load and environmental temperature variations. To achieve the objective, a useful and simple second law based thermo-economic model with instant access to production costs is introduced and generalized. The presented exergy costing method indicates that the cost of reversible power is the theoretically minimum cost, where the reversible power is the theoretical maximum power that can be gained from a thermal system. The analysis has been applied to a combined cycle power plant, which is located in Bursa/Turkey. The effects of load and environmental temperature variations on costs are discussed and presented. Without considering the load effect, the cost of net electric power varied from 29 to 32$ MW-1 h(-1), and about 40-45% of the cost of net electric power is composed of cost of irreversibility, while its 55-60% of it is the cost of reversible power. It is shown that the augmentation in the costs are not continuous with the environmental temperature decrease. In addition, there is an extremum at the temperature range between 5 and 10 degrees C. |
URI: | https://doi.org/10.1002/er.1239 https://onlinelibrary.wiley.com/doi/10.1002/er.1239 http://hdl.handle.net/11452/29190 |
ISSN: | 1099-114X 0363-907X |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.