Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29217
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoyarslan, Celal-
dc.contributor.authorBargmann, Swantje-
dc.contributor.authorHahner, Peter-
dc.date.accessioned2022-10-26T12:51:32Z-
dc.date.available2022-10-26T12:51:32Z-
dc.date.issued2015-12-10-
dc.identifier.citationSoyarslan, C. vd. (2016). "Modeling of fracture in small punch tests for small- and large-scale yielding conditions at various temperatures". International Journal of Mechanical Sciences, 106, 266-285.en_US
dc.identifier.issn0020-7403-
dc.identifier.issn1879-2162-
dc.identifier.urihttps://doi.org/10.1016/j.ijmecsci.2015.12.007-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0020740315004245-
dc.identifier.urihttp://hdl.handle.net/11452/29217-
dc.description.abstractWe present a systematic numerical study on temperature dependent fracture mode change in small punch tests. Following Needleman and Tvergaard (2000), we model the material as thermo-inelastic, where the ductile fracture mode, by void nucleation, growth and coalescence is accounted for by Gurson's porous metal plasticity (Gurson, 1977). The brittle fracture mode by cleavage is accounted for by Ritchie-Knott-Rice's deterministic maximum principal stress criterion (Ritchie et al., 1973). The well-known problem of mesh dependence associated with softening material behavior is remedied by using an integral type nonlocal formulation similar to that presented in Tvergaard and Needleman (1995). Two length scales are incorporated into the constitutive relations: the ductile fracture length scale is based on the average inclusion distance and associated with the nonlocal evolution equation for the porosity. The brittle fracture length scale is based on the average grain size and associated with the material region at which the maximum principal stress is averaged out. The material model is used to simulate small punch tests at -196 degrees C, -158 degrees C and 25 degrees C of notched and unnotched specimens of P91 steel representative for small- and large-scale yielding conditions, respectively. The simulated fracture modes and patterns show a very good agreement with experiments: for 196 degrees C brittle fracture propagating normal to the maximum (tensile) principal stress prevails. For 25 degrees C ductile fracture is governed by shear localization with voidage. The simulations also show that the deformation energy is considerably higher for the upper shelf tests compared to the lower shelf tests.en_US
dc.description.sponsorshipGerman Research Foundation (DFG) - PAK250en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf Gayri Ticari Türetilemez 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEngineeringen_US
dc.subjectMechanicsen_US
dc.subjectDuctile-brittle transitionen_US
dc.subjectSmall punch testen_US
dc.subjectGurson-Tvergaard-Needleman plasticityen_US
dc.subjectRitchie-Knott-Rice modelen_US
dc.subjectDuctile-brittle transitionen_US
dc.subjectElastic-plastic solidsen_US
dc.subjectModified 9cr-1mo steelen_US
dc.subjectNonlocal damageen_US
dc.subjectCrack-growthen_US
dc.subjectCleavage fractureen_US
dc.subjectContinuum theoryen_US
dc.subjectVoid nucleationen_US
dc.subjectNeural-networksen_US
dc.subjectTensile-stressen_US
dc.subjectBone cementen_US
dc.subjectDuctile fractureen_US
dc.subjectFractureen_US
dc.subjectMaterials testingen_US
dc.subjectMetallic glassen_US
dc.subjectConstitutive relationsen_US
dc.subjectDuctile brittle transitionen_US
dc.subjectLarge-scale yieldingen_US
dc.subjectMaximum principal stressen_US
dc.subjectNonlocal formulationsen_US
dc.subjectRice-modelen_US
dc.subjectTemperature dependenten_US
dc.subjectBrittle fractureen_US
dc.titleModeling of fracture in small punch tests for small- and large-scale yielding conditions at various temperaturesen_US
dc.typeArticleen_US
dc.identifier.wos000371842500024tr_TR
dc.identifier.scopus2-s2.0-84954134513tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.tr_TR
dc.identifier.startpage266tr_TR
dc.identifier.endpage285tr_TR
dc.identifier.volume106tr_TR
dc.relation.journalInternational Journal of Mechanical Sciencesen_US
dc.contributor.buuauthorGülçimen, Betül-
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationSanayitr_TR
dc.subject.wosEngineering, mechanicalen_US
dc.subject.wosMechanicsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid36983839100tr_TR
dc.subject.scopusPunches; Creep; Indentationen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
File Description SizeFormat 
Gülçimen_vd_2016.pdf7.28 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons