Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29271
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurhan, Yıldıray-
dc.contributor.authorTokat, Sezai-
dc.date.accessioned2022-10-31T08:32:41Z-
dc.date.available2022-10-31T08:32:41Z-
dc.date.issued2007-12-01-
dc.identifier.citationTurhan, Y. vd. (2007). "Statistical and computational intelligence tools for the analyses of warp tension in different back-rest oscillations". Information Sciences, 177(23), 5237-5252.en_US
dc.identifier.issn0020-0255-
dc.identifier.issn1872-6291-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2007.06.029-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0020025507003246-
dc.identifier.urihttp://hdl.handle.net/11452/29271-
dc.description.abstractIn this paper, experimental, computational intelligence based and statistical investigations of warp tensions in different back-rest oscillations are presented. Firstly, in the experimental stage, springs having different stiffnesses are used to obtain different back-rest oscillations. For each spring, fabrics are woven in different weft densities and the warp tensions are measured and saved during weaving process. Secondly, in the statistical investigation, the experimental data are analyzed by using linear multiple and quadratic multiple-regression models. Later, in the computational intelligence based investigation, the data obtained from the experimental study are analyzed by using artificial neural networks that are universal approximators which provide a massively parallel processing and decentralized computing. Specialty, radial basis function neural network structure is chosen. In this structure, cross-validation technique is used in order to determine the number of radial basis functions. Finally, the results of regression analysis, the computational intelligence based analysis and experimental measurements are compared by using the coefficient of determination. From the results, it is shown that the computational intelligence based analysis indicates a better agreement with the experimental measurement than the statistical analysis.en_US
dc.language.isoenen_US
dc.publisherElsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBack-rest oscillationen_US
dc.subjectQuadratic programmingen_US
dc.subjectWarp tensionen_US
dc.subjectNeural networksen_US
dc.subjectBack-rest oscillationsen_US
dc.subjectCross-validation techniqueen_US
dc.subjectFabricsen_US
dc.subjectData regressionen_US
dc.subjectMathematical modelsen_US
dc.subjectMultiple-regression modelsen_US
dc.subjectWeft densitiesen_US
dc.subjectParallel processing systemsen_US
dc.subjectRadial basis function networksen_US
dc.subjectRegression analysisen_US
dc.subjectStiffnessen_US
dc.subjectWeavingen_US
dc.subjectCross-validationen_US
dc.subjectData regressionen_US
dc.subjectNeural networksen_US
dc.subjectRadial basis functionen_US
dc.subjectWarp tensionen_US
dc.subjectWeft densityen_US
dc.subjectPerformanceen_US
dc.subjectRBFen_US
dc.subjectComputer scienceen_US
dc.titleStatistical and computational intelligence tools for the analyses of warp tension in different back-rest oscillationsen_US
dc.typeArticleen_US
dc.identifier.wos000250285400009tr_TR
dc.identifier.scopus2-s2.0-34548604302tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.tr_TR
dc.identifier.startpage5237tr_TR
dc.identifier.endpage5252tr_TR
dc.identifier.volume177tr_TR
dc.identifier.issue23tr_TR
dc.relation.journalInformation Sciencesen_US
dc.contributor.buuauthorEren, Recep-
dc.relation.collaborationYurt içitr_TR
dc.subject.wosComputer science, information systemsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1-
dc.contributor.scopusid8649952300-
dc.subject.scopusAir-Jet Loom; Weft Insertion; Yarn Tensionen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.