Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29349
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Weikun-
dc.contributor.authorLin, Qishan-
dc.contributor.authorArdawi, Mohammed-Salleh M.-
dc.contributor.authorMousa, Shaker A.-
dc.date.accessioned2022-11-03T11:03:40Z-
dc.date.available2022-11-03T11:03:40Z-
dc.date.issued2017-02-28-
dc.identifier.citationLi, W. vd. (2017). ''Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery''. Journal of Controlled Release, 248, 117-124.en_US
dc.identifier.issn0168-3659-
dc.identifier.issn1873-4995-
dc.identifier.urihttps://doi.org/10.1016/j.jconrel.2017.01.009-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0168365916306034-
dc.identifier.urihttp://hdl.handle.net/11452/29349-
dc.description.abstractLycopene is a natural anti-oxidant that has attracted much attention due to its varied applications such as protection against loss of bonemass, chronic diseases, skin cancer, prostate cancer, and cardiovascular disease. However, high instability and extremely low oral bioavailability limit its further clinical development. We selected a green tea catechin derivative, oligomerized (-)-epigallocatechin-3-O-gallate (OEGCG) as a carrier for oral lycopene delivery. Lycopene-loaded OEGCG nanoparticles (NPs) were prepared by a nano-precipitation method, followed by coating with chitosan to form a shell. This method not only can easily control the size of the NP to be around 200 nm to improve its bioavailability, but also can effectively protect the lycopene against degradation due to EGCG's anti-oxidant property. OEGCG was carefully characterized with nuclearmagnetic resonance spectroscopy and mass spectrometry. Lycopene-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared by the same method. Chitosan-coated OEGCG/lycopene NPs had a diameter of 152 +/- 32 nmand a.-potential of 58.3 +/- 4.2 mv as characterized with transmission electron microscopy and dynamic light scattering. The loading capacity of lycopene was 9% and encapsulation efficiency was 89%. FT-IR spectral analysis revealed electrostatic interaction between OEGCG and chitosan. Freeze drying of the NPs was also evaluated as a means to improve shelf life. Dynamic light scattering data showed that no aggregation occurred, and the size of the NP increased 1.2 times (S-f/S-i ratio) in the presence of 10% sucrose after freeze drying. The in vitro release study showed slow release of lycopene in simulated gastric fluid at acidic pH and faster release in simulated intestinal fluid. In an in vivo study in mice, lycopene pharmacokinetic parameters were improved by lycopene/OEGCG/chitosan NPs, but not improved by lycopene/PLGA/chitosan NPs. The self-assembled nanostructure of OEGCG combined with lycopene may be a promising application in oral drug delivery in various indications.en_US
dc.description.sponsorshipPharmaceutical Research Institute (PRI), Center of Excellence in Nanomedicine and Translation Research at the Albany College of Pharmacy and Health Sciencesen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChemistryen_US
dc.subjectPharmacology & pharmacyen_US
dc.subjectBioavailabilityen_US
dc.subjectChitosanen_US
dc.subjectLC-MS/MSen_US
dc.subjectLycopeneen_US
dc.subjectOral deliveryen_US
dc.subjectPolymeric nanoparticlesen_US
dc.subjectDrug-deliveryen_US
dc.subjectPlga nanoparticlesen_US
dc.subjectProstate-canceren_US
dc.subjectIn-vivoen_US
dc.subjectChitosanen_US
dc.subjectBioavailabilityen_US
dc.subjectSystemsen_US
dc.subjectEncapsulationen_US
dc.subjectFormulationen_US
dc.subjectTherapyen_US
dc.subjectBiochemistryen_US
dc.subjectChitinen_US
dc.subjectChitosanen_US
dc.subjectDynamic light scatteringen_US
dc.subjectEncapsulationen_US
dc.subjectFlavonoidsen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectLight scatteringen_US
dc.subjectLow temperature dryingen_US
dc.subjectMagnetic resonance spectroscopyen_US
dc.subjectMass spectrometryen_US
dc.subjectNanoparticlesen_US
dc.subjectNanostructuresen_US
dc.subjectNuclear magnetic resonance spectroscopyen_US
dc.subjectOrganic compoundsen_US
dc.subjectOxidantsen_US
dc.subjectPhenolsen_US
dc.subjectPrecipitation (chemical)en_US
dc.subjectSelf assemblyen_US
dc.subjectSpectrum analysisen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectBioavailabilityen_US
dc.subjectLycopenesen_US
dc.subjectOral deliveryen_US
dc.subjectPolymeric nanoparticlesen_US
dc.subjectDiseasesen_US
dc.subjectLC-MS/MSen_US
dc.subject.meshAdministration, oralen_US
dc.subject.meshAntioxidantsen_US
dc.subject.meshBiological availabilityen_US
dc.subject.meshCarotenoidsen_US
dc.subject.meshCatechinen_US
dc.subject.meshMaleen_US
dc.subject.meshMice, inbred C57BLen_US
dc.subject.meshNanoparticlesen_US
dc.subject.meshTeaen_US
dc.subject.meshDrug carriersen_US
dc.subject.meshAnimalsen_US
dc.titleSelf-assembly of green tea catechin derivatives in nanoparticles for oral lycopene deliveryen_US
dc.typeArticleen_US
dc.identifier.wos000397210300010tr_TR
dc.identifier.scopus2-s2.0-85009481212tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Veteriner Fakültesi/Fizyoloji Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0002-5600-8162tr_TR
dc.identifier.startpage117tr_TR
dc.identifier.endpage124tr_TR
dc.identifier.volume248tr_TR
dc.relation.journalJournal of Controlled Releaseen_US
dc.contributor.buuauthorYalçın, Murat-
dc.contributor.researcheridAAG-6956-2021tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.identifier.pubmed28077264tr_TR
dc.subject.wosChemistry, multidisciplinaryen_US
dc.subject.wosPharmacology & pharmacyen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.indexed.pubmedPubMeden_US
dc.wos.quartileQ1en_US
dc.contributor.scopusid57192959734tr_TR
dc.subject.scopusFlash; Quality Attributes; Drugsen_US
dc.subject.emtreeChitosan nanoparticleen_US
dc.subject.emtreeEpigallocatechin gallateen_US
dc.subject.emtreeLycopeneen_US
dc.subject.emtreePolyglactinen_US
dc.subject.emtreeAntioxidanten_US
dc.subject.emtreeCarotenoiden_US
dc.subject.emtreeCatechinen_US
dc.subject.emtreeDrug carrieren_US
dc.subject.emtreeEpigallocatechin gallateen_US
dc.subject.emtreeLycopeneen_US
dc.subject.emtreeNanoparticleen_US
dc.subject.emtreeAnimal experimenten_US
dc.subject.emtreeAnimal modelen_US
dc.subject.emtreeAntioxidant activityen_US
dc.subject.emtreeArticleen_US
dc.subject.emtreeControlled studyen_US
dc.subject.emtreeDrug bioavailabilityen_US
dc.subject.emtreeDrug blood levelen_US
dc.subject.emtreeDrug degradationen_US
dc.subject.emtreeDrug delivery systemen_US
dc.subject.emtreeDrug releaseen_US
dc.subject.emtreeFreeze dryingen_US
dc.subject.emtreeMaleen_US
dc.subject.emtreeMouseen_US
dc.subject.emtreeNonhumanen_US
dc.subject.emtreeParticle sizeen_US
dc.subject.emtreePHen_US
dc.subject.emtreePharmacokinetic parametersen_US
dc.subject.emtreePhoton correlation spectroscopyen_US
dc.subject.emtreePrecipitationen_US
dc.subject.emtreePriority journalen_US
dc.subject.emtreeProton nuclear magnetic resonanceen_US
dc.subject.emtreeShelf lifeen_US
dc.subject.emtreeStatic electricityen_US
dc.subject.emtreeTransmission electron microscopyen_US
dc.subject.emtreeAnalogs and derivativesen_US
dc.subject.emtreeAnimalen_US
dc.subject.emtreeBioavailabilityen_US
dc.subject.emtreeC57BL mouseen_US
dc.subject.emtreeChemistryen_US
dc.subject.emtreeOral drug administrationen_US
dc.subject.emtreeTeaen_US
dc.subject.emtreeUltrastructureen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.