Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29421
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Simos, T. E. | - |
dc.date.accessioned | 2022-11-07T13:26:02Z | - |
dc.date.available | 2022-11-07T13:26:02Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | Yurttaş, A. vd. (2011). "Classification of normal subgroups of Hecke group H6 in terms of parabolic class number". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, 1389, 315-316. | en_US |
dc.identifier.issn | 0094-243X | - |
dc.identifier.uri | https://doi.org/10.1063/1.3636729 | - |
dc.identifier.uri | https://aip.scitation.org/doi/10.1063/1.3636729 | - |
dc.identifier.uri | http://hdl.handle.net/11452/29421 | - |
dc.description | Bu çalışma, 19-25 Eylül 2011 tarihlerinde Halkidiki[Yunanistan]'de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)'da bildiri olarak sunulmuştur. | tr_TR |
dc.description.abstract | In [3], Greenberg showed that n <= 6t(3) so that mu - nt <= 6t(4) for a normal subgroup N of level n and index mu having t parabolic classes in the modular group Gamma. Accola, [1], improved these to n <= 6t(2) always and n <= t(2) if Gamma/N is not abelian. Newman, [5], obtained another generalisation of these results. Hecke groups are generalisations of the modular group. We particularly deal with one of the most important cases, q = 6. | en_US |
dc.language.iso | en | en_US |
dc.publisher | AIP | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Hecke groups | en_US |
dc.subject | Level | en_US |
dc.subject | Parabolic class number | en_US |
dc.subject | Riemann surface | en_US |
dc.subject | Automorphisms | en_US |
dc.title | Classification of normal subgroups of Hecke group H6 in terms of parabolic class number | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.wos | 000302239800077 | tr_TR |
dc.identifier.scopus | 2-s2.0-81855200150 | tr_TR |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı. | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.identifier.startpage | 315 | tr_TR |
dc.identifier.endpage | 316 | tr_TR |
dc.identifier.volume | 1389 | tr_TR |
dc.relation.journal | AIP Conference Proceedings, Numerical Analysis and Applied Mathematics ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics | en_US |
dc.contributor.buuauthor | Yurttaş, Aysun | - |
dc.contributor.buuauthor | Demirci, Musa | - |
dc.contributor.buuauthor | Cangül, İsmail Naci | - |
dc.contributor.researcherid | AAG-8470-2021 | tr_TR |
dc.contributor.researcherid | ABA-6206-2020 | tr_TR |
dc.contributor.researcherid | J-3505-2017 | tr_TR |
dc.subject.wos | Mathematics, applied | en_US |
dc.indexed.wos | CPCIS | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.contributor.scopusid | 37090056000 | tr_TR |
dc.contributor.scopusid | 23566581100 | tr_TR |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.subject.scopus | Klein Surface; Compact; Belyi | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.