Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimos, T. E.-
dc.date.accessioned2022-11-07T13:26:02Z-
dc.date.available2022-11-07T13:26:02Z-
dc.date.issued2011-
dc.identifier.citationYurttaş, A. vd. (2011). "Classification of normal subgroups of Hecke group H6 in terms of parabolic class number". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, 1389, 315-316.en_US
dc.identifier.issn0094-243X-
dc.identifier.urihttps://doi.org/10.1063/1.3636729-
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/1.3636729-
dc.identifier.urihttp://hdl.handle.net/11452/29421-
dc.descriptionBu çalışma, 19-25 Eylül 2011 tarihlerinde Halkidiki[Yunanistan]'de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)'da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractIn [3], Greenberg showed that n <= 6t(3) so that mu - nt <= 6t(4) for a normal subgroup N of level n and index mu having t parabolic classes in the modular group Gamma. Accola, [1], improved these to n <= 6t(2) always and n <= t(2) if Gamma/N is not abelian. Newman, [5], obtained another generalisation of these results. Hecke groups are generalisations of the modular group. We particularly deal with one of the most important cases, q = 6.en_US
dc.language.isoenen_US
dc.publisherAIPen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectHecke groupsen_US
dc.subjectLevelen_US
dc.subjectParabolic class numberen_US
dc.subjectRiemann surfaceen_US
dc.subjectAutomorphismsen_US
dc.titleClassification of normal subgroups of Hecke group H6 in terms of parabolic class numberen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000302239800077tr_TR
dc.identifier.scopus2-s2.0-81855200150tr_TR
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.identifier.startpage315tr_TR
dc.identifier.endpage316tr_TR
dc.identifier.volume1389tr_TR
dc.relation.journalAIP Conference Proceedings, Numerical Analysis and Applied Mathematics ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematicsen_US
dc.contributor.buuauthorYurttaş, Aysun-
dc.contributor.buuauthorDemirci, Musa-
dc.contributor.buuauthorCangül, İsmail Naci-
dc.contributor.researcheridAAG-8470-2021tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.subject.wosMathematics, applieden_US
dc.indexed.wosCPCISen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid37090056000tr_TR
dc.contributor.scopusid23566581100tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.subject.scopusKlein Surface; Compact; Belyien_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.