Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29472
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Manohara, S. R. | - |
dc.contributor.author | Hanagodimath, S. M. | - |
dc.contributor.author | Gerward, Leif | - |
dc.date.accessioned | 2022-11-17T07:08:40Z | - |
dc.date.available | 2022-11-17T07:08:40Z | - |
dc.date.issued | 2013-05 | - |
dc.identifier.citation | Küçük, N. vd. (2013). "Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative study". Radiation Physics and Chemistry, 85, 10-22. | en_US |
dc.identifier.issn | 0969-806X | - |
dc.identifier.uri | https://doi.org/10.1016/j.radphyschem.2013.01.021 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0969806X13000261 | - |
dc.identifier.uri | http://hdl.handle.net/11452/29472 | - |
dc.description.abstract | In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca-3(PO4)(2)] in the energy region 0.015-15 MeV, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg-Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.43 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA data for TLD materials have been given with penetration depth and incident photon energy as comparative to the results of the interpolation method using the Geometrical Progression (G-P) fitting formula. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Chemistry | en_US |
dc.subject | Nuclear science & technology | en_US |
dc.subject | Physics | en_US |
dc.subject | Buildup factor | en_US |
dc.subject | Gamma-ray | en_US |
dc.subject | Energy absorption | en_US |
dc.subject | Thermo luminescence dosimetry | en_US |
dc.subject | Neural network | en_US |
dc.subject | Geometrical progression | en_US |
dc.subject | Training algorithms | en_US |
dc.subject | 100 mfp | en_US |
dc.subject | Approximation | en_US |
dc.subject | Technologies | en_US |
dc.subject | Prediction | en_US |
dc.subject | Parameters | en_US |
dc.subject | Signals | en_US |
dc.subject | Depths | en_US |
dc.subject | Dosimetry | en_US |
dc.subject | Energy absorption | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Thermoluminescence | en_US |
dc.subject | Buildup factor | en_US |
dc.subject | Computational effort | en_US |
dc.subject | Incident photon energy | en_US |
dc.subject | Interpolation method | en_US |
dc.subject | Levenberg-Marquardt learning algorithms | en_US |
dc.subject | Multi-layer perceptron neural networks | en_US |
dc.subject | Multi-layered Perceptron | en_US |
dc.subject | Thermoluminescence dosimetry | en_US |
dc.subject | Gamma rays | en_US |
dc.title | Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative study | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000317886200003 | tr_TR |
dc.identifier.scopus | 2-s2.0-84874582759 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü. | tr_TR |
dc.relation.bap | UAP(F)-2011/74 | tr_TR |
dc.identifier.startpage | 10 | tr_TR |
dc.identifier.endpage | 22 | tr_TR |
dc.identifier.volume | 86 | tr_TR |
dc.relation.journal | Radiation Physics and Chemistry | en_US |
dc.contributor.buuauthor | Küçük, Nil | - |
dc.contributor.researcherid | 0000-0002-9193-4591 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Chemistry, physical | en_US |
dc.subject.wos | Nuclear science & technology | en_US |
dc.subject.wos | Physics, atomic, molecular & chemical | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q2 (Nuclear science & technology) | en_US |
dc.wos.quartile | Q3 | en_US |
dc.contributor.scopusid | 24436223800 | tr_TR |
dc.subject.scopus | Radiation Shield; Gamma Ray; Shielding | en_US |
dc.subject.emtree | Beryllium oxide | en_US |
dc.subject.emtree | Borate sodium | en_US |
dc.subject.emtree | Calcium phosphate | en_US |
dc.subject.emtree | Calcium sulfate | en_US |
dc.subject.emtree | Chemical compound | en_US |
dc.subject.emtree | Lithium fluoride | en_US |
dc.subject.emtree | Lithium tetraborate | en_US |
dc.subject.emtree | Potassium magnesium trifluoride | en_US |
dc.subject.emtree | Unclassified drug | en_US |
dc.subject.emtree | Article | en_US |
dc.subject.emtree | Artificial neural network | en_US |
dc.subject.emtree | Chemical analysis | en_US |
dc.subject.emtree | Chemical parameters | en_US |
dc.subject.emtree | Chemical phenomena | en_US |
dc.subject.emtree | Controlled study | en_US |
dc.subject.emtree | Gamma radiation | en_US |
dc.subject.emtree | Geometric progression fitting formula | en_US |
dc.subject.emtree | Geometry | en_US |
dc.subject.emtree | Mathematical computing | en_US |
dc.subject.emtree | Multilayer perceptron neural network | en_US |
dc.subject.emtree | Perceptron | en_US |
dc.subject.emtree | Radiation absorption | en_US |
dc.subject.emtree | Thermoluminescence dosimetry | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.