Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29472
Full metadata record
DC FieldValueLanguage
dc.contributor.authorManohara, S. R.-
dc.contributor.authorHanagodimath, S. M.-
dc.contributor.authorGerward, Leif-
dc.date.accessioned2022-11-17T07:08:40Z-
dc.date.available2022-11-17T07:08:40Z-
dc.date.issued2013-05-
dc.identifier.citationKüçük, N. vd. (2013). "Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative study". Radiation Physics and Chemistry, 85, 10-22.en_US
dc.identifier.issn0969-806X-
dc.identifier.urihttps://doi.org/10.1016/j.radphyschem.2013.01.021-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0969806X13000261-
dc.identifier.urihttp://hdl.handle.net/11452/29472-
dc.description.abstractIn this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca-3(PO4)(2)] in the energy region 0.015-15 MeV, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg-Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.43 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA data for TLD materials have been given with penetration depth and incident photon energy as comparative to the results of the interpolation method using the Geometrical Progression (G-P) fitting formula.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChemistryen_US
dc.subjectNuclear science & technologyen_US
dc.subjectPhysicsen_US
dc.subjectBuildup factoren_US
dc.subjectGamma-rayen_US
dc.subjectEnergy absorptionen_US
dc.subjectThermo luminescence dosimetryen_US
dc.subjectNeural networken_US
dc.subjectGeometrical progressionen_US
dc.subjectTraining algorithmsen_US
dc.subject100 mfpen_US
dc.subjectApproximationen_US
dc.subjectTechnologiesen_US
dc.subjectPredictionen_US
dc.subjectParametersen_US
dc.subjectSignalsen_US
dc.subjectDepthsen_US
dc.subjectDosimetryen_US
dc.subjectEnergy absorptionen_US
dc.subjectNeural networksen_US
dc.subjectThermoluminescenceen_US
dc.subjectBuildup factoren_US
dc.subjectComputational efforten_US
dc.subjectIncident photon energyen_US
dc.subjectInterpolation methoden_US
dc.subjectLevenberg-Marquardt learning algorithmsen_US
dc.subjectMulti-layer perceptron neural networksen_US
dc.subjectMulti-layered Perceptronen_US
dc.subjectThermoluminescence dosimetryen_US
dc.subjectGamma raysen_US
dc.titleModeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative studyen_US
dc.typeArticleen_US
dc.identifier.wos000317886200003tr_TR
dc.identifier.scopus2-s2.0-84874582759tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.tr_TR
dc.relation.bapUAP(F)-2011/74tr_TR
dc.identifier.startpage10tr_TR
dc.identifier.endpage22tr_TR
dc.identifier.volume86tr_TR
dc.relation.journalRadiation Physics and Chemistryen_US
dc.contributor.buuauthorKüçük, Nil-
dc.contributor.researcherid0000-0002-9193-4591tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosChemistry, physicalen_US
dc.subject.wosNuclear science & technologyen_US
dc.subject.wosPhysics, atomic, molecular & chemicalen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ2 (Nuclear science & technology)en_US
dc.wos.quartileQ3en_US
dc.contributor.scopusid24436223800tr_TR
dc.subject.scopusRadiation Shield; Gamma Ray; Shieldingen_US
dc.subject.emtreeBeryllium oxideen_US
dc.subject.emtreeBorate sodiumen_US
dc.subject.emtreeCalcium phosphateen_US
dc.subject.emtreeCalcium sulfateen_US
dc.subject.emtreeChemical compounden_US
dc.subject.emtreeLithium fluorideen_US
dc.subject.emtreeLithium tetraborateen_US
dc.subject.emtreePotassium magnesium trifluorideen_US
dc.subject.emtreeUnclassified drugen_US
dc.subject.emtreeArticleen_US
dc.subject.emtreeArtificial neural networken_US
dc.subject.emtreeChemical analysisen_US
dc.subject.emtreeChemical parametersen_US
dc.subject.emtreeChemical phenomenaen_US
dc.subject.emtreeControlled studyen_US
dc.subject.emtreeGamma radiationen_US
dc.subject.emtreeGeometric progression fitting formulaen_US
dc.subject.emtreeGeometryen_US
dc.subject.emtreeMathematical computingen_US
dc.subject.emtreeMultilayer perceptron neural networken_US
dc.subject.emtreePerceptronen_US
dc.subject.emtreeRadiation absorptionen_US
dc.subject.emtreeThermoluminescence dosimetryen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.