Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/29542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChampasak, Pakin-
dc.contributor.authorPanagant, Natee-
dc.contributor.authorPholdee, Nantiwat-
dc.contributor.authorBureerat, Sujin-
dc.date.accessioned2022-11-23T06:24:49Z-
dc.date.available2022-11-23T06:24:49Z-
dc.date.issued2020-05-
dc.identifier.citationChampasak, P. vd. (2020). "Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle". Aerospace Science and Technology, 100.en_US
dc.identifier.issn1270-9638-
dc.identifier.urihttps://doi.org/10.1016/j.ast.2020.105783-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1270963819316918-
dc.identifier.urihttp://hdl.handle.net/11452/29542-
dc.description.abstractMany-objective optimisation is a design problem, having more than 3 objective functions, which is found to be difficult to solve. Implementation of such optimisation on aircraft conceptual design will greatly benefit a design team, as a great number of trade-off design solutions are provided for further decision making. In this paper, a many-objective optimisation problem for an unmanned aerial vehicle (UAV) is posed with 6 objective functions: take-off gross weight, drag coefficient, take off distance, power required, lift coefficient and endurance subject to aircraft performance and stability constraints. Aerodynamic analysis is carried out using a vortex lattice method, while aircraft component weights are estimated empirically. A new self-adaptive meta-heuristic based on decomposition is specifically developed for this design problem. The new algorithm along with nine established and recently developed multi-objective and many-objective meta-heuristics are employed to solve the problem, while comparative performance is made based upon a hypervolume indicator. The results reveal that the proposed optimiser is the best performer for this design task.en_US
dc.description.sponsorshipDefence Technology Instituteen_US
dc.description.sponsorshipThailand Research Funden_US
dc.language.isoenen_US
dc.publisherElsevier Franceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAircraft conceptual designen_US
dc.subjectMany-objective optimisationen_US
dc.subjectAircraft performanceen_US
dc.subjectDynamic stabilityen_US
dc.subjectMultiobjective Evolutionary algorithmen_US
dc.subjectAerodynamic shape optimizationen_US
dc.subjectUnmanned aerial vehiclesen_US
dc.subjectSystemen_US
dc.subjectAircraft conceptual designen_US
dc.subjectAircraft performanceen_US
dc.subjectDynamic stabilityen_US
dc.subjectMany-objective optimisationen_US
dc.subjectAerodynamicsen_US
dc.subjectAntennasen_US
dc.subjectConceptual designen_US
dc.subjectDecision makingen_US
dc.subjectEconomic and social effectsen_US
dc.subjectFixed wingsen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectOptimizationen_US
dc.subjectStabilityen_US
dc.subjectAircraft conceptual designsen_US
dc.subjectAircraft performanceen_US
dc.subjectComparative performanceen_US
dc.subjectHypervolume indicatorsen_US
dc.subjectObjective optimisationen_US
dc.subjectStability constraintsen_US
dc.subjectTake off gross weighten_US
dc.subjectVortex lattice methoden_US
dc.subjectVehicle performanceen_US
dc.titleSelf-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicleen_US
dc.typeArticleen_US
dc.identifier.wos000525859400032tr_TR
dc.identifier.scopus2-s2.0-85080082565tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği.tr_TR
dc.contributor.orcid0000-0003-1790-6987tr_TR
dc.identifier.volume100tr_TR
dc.relation.journalAerospace Science and Technologyen_US
dc.contributor.buuauthorYıldız, Ali Rıza-
dc.contributor.researcheridF-7426-2011tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosEngineeringen_US
dc.subject.wosAerospaceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.contributor.scopusid7102365439tr_TR
dc.subject.scopusDecomposition; Evolutionary Multiobjective Optimization; Pareto Fronten_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.