Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/29550
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2022-11-24T07:48:11Z | - |
dc.date.available | 2022-11-24T07:48:11Z | - |
dc.date.issued | 2016-06-09 | - |
dc.identifier.citation | Çetinkaya, A. vd. (2016). "Loss-of-function mutations in ELMO2 cause intraosseous vascular malformation by impeding RAC1 signaling". American Journal of Human Genetics, 99(2), 299-317. | en_US |
dc.identifier.issn | 0002-9297 | - |
dc.identifier.issn | 1537-6605 | - |
dc.identifier.uri | https://doi.org/10.1016/j.ajhg.2016.06.008 | - |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0002929716302105 | - |
dc.identifier.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974086/ | - |
dc.identifier.uri | http://hdl.handle.net/11452/29550 | - |
dc.description | Çalışmada 21 yazar bulunmaktadır. Bu yazarlardan sadece Bursa Uludağ Üniversitesi mensuplarının girişleri yapılmıştır. | tr_TR |
dc.description.abstract | Vascular malformations are non-neoplastic expansions of blood vessels that arise due to errors during angiogenesis. They are a heterogeneous group of sporadic or inherited vascular disorders characterized by localized lesions of arteriovenous, capillary, or lymphatic origin. Vascular malformations that occur inside bone tissue are rare. Herein, we report loss-of-function mutations in ELMO2 (which translates extracellular signals into cellular movements) that are causative for autosomal-recessive intraosseous vascular malformation (VMOS) in five different families. Individuals with VMOS suffer from life-threatening progressive expansion of the jaw, craniofacial, and other intramembranous bones caused by malformed blood vessels that lack a mature vascular smooth muscle layer. Analysis of primary fibroblasts from an affected individual showed that absence of ELMO2 correlated with a significant downregulation of binding partner DOCK1, resulting in deficient RAC1-dependent cell migration. Unexpectedly, elmo2-knockout zebrafish appeared phenotypically normal, suggesting that there might be human-specific ELMO2 requirements in bone vasculature homeostasis or genetic compensation by related genes. Comparative phylogenetic analysis indicated that elmo2 originated upon the appearance of intramembranous bones and the jaw in ancestral vertebrates, implying that elmo2 might have been involved in the evolution of these novel traits. The present findings highlight the necessity of ELMO2 for maintaining vascular integrity, specifically in intramembranous bones. | en_US |
dc.description.sponsorship | CRANIRARE consortium - R07197KS | en_US |
dc.description.sponsorship | Hacettepe Üniversitesi- 00-02-101-009 / 03-D07-101-001 | tr_TR |
dc.description.sponsorship | Strategic Positioning Fund for Genetic Orphan Diseases | en_US |
dc.description.sponsorship | Agency for Science Technology & Research (A*STAR) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Cell Press | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Genetics & heredity | en_US |
dc.subject | Integrin-linked kinase | en_US |
dc.subject | Craniofacial region | en_US |
dc.subject | Sequencing data | en_US |
dc.subject | Cell-migration | en_US |
dc.subject | Angiogenesis | en_US |
dc.subject | Mechanism | en_US |
dc.subject | Complex | en_US |
dc.subject | Lesions | en_US |
dc.subject | Growth | en_US |
dc.subject | Bone | en_US |
dc.subject.mesh | Adaptor proteins, signal transducing | en_US |
dc.subject.mesh | Adult | en_US |
dc.subject.mesh | Alleles | en_US |
dc.subject.mesh | Animals | en_US |
dc.subject.mesh | Bone and bones | en_US |
dc.subject.mesh | Cell movement | en_US |
dc.subject.mesh | Cytoskeletal proteins | en_US |
dc.subject.mesh | Evolution, molecular | en_US |
dc.subject.mesh | Female | en_US |
dc.subject.mesh | Homozygote | en_US |
dc.subject.mesh | Humans | en_US |
dc.subject.mesh | Male | en_US |
dc.subject.mesh | Mutation | en_US |
dc.subject.mesh | Phenotype | en_US |
dc.subject.mesh | Phylogeny | en_US |
dc.subject.mesh | Rac GTP-binding proteins | en_US |
dc.subject.mesh | Rac1 GTP-binding protein | en_US |
dc.subject.mesh | Signal transduction | en_US |
dc.subject.mesh | Species specificity | en_US |
dc.subject.mesh | Vascular malformations | en_US |
dc.subject.mesh | Zebrafish | en_US |
dc.title | Loss-of-function mutations in ELMO2 cause intraosseous vascular malformation by impeding RAC1 signaling | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000381617200004 | tr_TR |
dc.identifier.scopus | 2-s2.0-84979752469 | tr_TR |
dc.relation.tubitak | 108S420 | tr_TR |
dc.relation.tubitak | K030-T439 | tr_TR |
dc.relation.tubitak | 2011K120020 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Moleküler Biyoloji ve Genetik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-1459-5485 | tr_TR |
dc.identifier.startpage | 299 | tr_TR |
dc.identifier.endpage | 317 | tr_TR |
dc.identifier.volume | 99 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.relation.journal | American Journal of Human Genetics | en_US |
dc.contributor.buuauthor | Uz, Elif | - |
dc.relation.collaboration | Yurt içi | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.collaboration | Sanayi | tr_TR |
dc.identifier.pubmed | 27476657 | tr_TR |
dc.subject.wos | Genetics & heredity | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.pubmed | PubMed | en_US |
dc.wos.quartile | Q1 | en_US |
dc.contributor.scopusid | 13807893000 | tr_TR |
dc.subject.scopus | Primary Intraosseous Vascular Malformation; Skull; Parietal Bone | en_US |
dc.subject.emtree | Actin | en_US |
dc.subject.emtree | Alkaline phosphatase | en_US |
dc.subject.emtree | Caldesmon | en_US |
dc.subject.emtree | Desmin | en_US |
dc.subject.emtree | Lactate dehydrogenase | en_US |
dc.subject.emtree | Myosin | en_US |
dc.subject.emtree | Rac1 protein | en_US |
dc.subject.emtree | Smooth muscle actin | en_US |
dc.subject.emtree | Cytoskeleton protein | en_US |
dc.subject.emtree | DOCK1 protein, human | en_US |
dc.subject.emtree | ELMO2 protein, human | en_US |
dc.subject.emtree | Rac protein | en_US |
dc.subject.emtree | Rac1 protein | en_US |
dc.subject.emtree | RAC1 protein, human | en_US |
dc.subject.emtree | Signal transducing adaptor protein | en_US |
dc.subject.emtree | Adult | en_US |
dc.subject.emtree | Angiogenesis | en_US |
dc.subject.emtree | Animal experiment | en_US |
dc.subject.emtree | Animal model | en_US |
dc.subject.emtree | Animal tissue | en_US |
dc.subject.emtree | Article | en_US |
dc.subject.emtree | Artificial embolization | en_US |
dc.subject.emtree | Autosomal recessive disorder | en_US |
dc.subject.emtree | Bone biopsy | en_US |
dc.subject.emtree | Bone deformation | en_US |
dc.subject.emtree | Bone malformation | en_US |
dc.subject.emtree | Brain hernia | en_US |
dc.subject.emtree | Brain ventricle peritoneum shunt | en_US |
dc.subject.emtree | Cell migration | en_US |
dc.subject.emtree | Clinical article | en_US |
dc.subject.emtree | Congenital blood vessel malformation | en_US |
dc.subject.emtree | Controlled study | en_US |
dc.subject.emtree | ELMO2 gene | en_US |
dc.subject.emtree | Exophthalmos | en_US |
dc.subject.emtree | Face asymmetry | en_US |
dc.subject.emtree | Facial bone | en_US |
dc.subject.emtree | Familial disease | en_US |
dc.subject.emtree | Female | en_US |
dc.subject.emtree | Fibroblast | en_US |
dc.subject.emtree | Gene | en_US |
dc.subject.emtree | Gene inactivation | en_US |
dc.subject.emtree | Gingiva bleeding | en_US |
dc.subject.emtree | Hemorrhagic shock | en_US |
dc.subject.emtree | Homozygosity | en_US |
dc.subject.emtree | Human | en_US |
dc.subject.emtree | Human tissue | en_US |
dc.subject.emtree | Intracranial hypertension | en_US |
dc.subject.emtree | Intravascular hemolysis | en_US |
dc.subject.emtree | Jaw | en_US |
dc.subject.emtree | Loss of function mutation | en_US |
dc.subject.emtree | Magnetic resonance angiography | en_US |
dc.subject.emtree | Male | en_US |
dc.subject.emtree | Nonhuman | en_US |
dc.subject.emtree | North American | en_US |
dc.subject.emtree | Paraplegia | en_US |
dc.subject.emtree | Phylogeny | en_US |
dc.subject.emtree | Priority journal | en_US |
dc.subject.emtree | Protein expression | en_US |
dc.subject.emtree | Saudi | en_US |
dc.subject.emtree | Sclerotherapy | en_US |
dc.subject.emtree | Signal transduction | en_US |
dc.subject.emtree | Skin biopsy | en_US |
dc.subject.emtree | Skull malformation | en_US |
dc.subject.emtree | Spinal cord compression | en_US |
dc.subject.emtree | Tooth disease | en_US |
dc.subject.emtree | Tooth extraction | en_US |
dc.subject.emtree | Turk (people) | en_US |
dc.subject.emtree | Umbilical hernia | en_US |
dc.subject.emtree | Vascular smooth muscle | en_US |
dc.subject.emtree | Vertebrate | en_US |
dc.subject.emtree | Zebra fish | en_US |
dc.subject.emtree | Allele | en_US |
dc.subject.emtree | Animal | en_US |
dc.subject.emtree | Bone | en_US |
dc.subject.emtree | Cell motion | en_US |
dc.subject.emtree | Congenital blood vessel malformation | en_US |
dc.subject.emtree | Deficiency | en_US |
dc.subject.emtree | Genetics | en_US |
dc.subject.emtree | Homozygote | en_US |
dc.subject.emtree | Metabolism | en_US |
dc.subject.emtree | Molecular evolution | en_US |
dc.subject.emtree | Mutation | en_US |
dc.subject.emtree | Pathology | en_US |
dc.subject.emtree | Phenotype | en_US |
dc.subject.emtree | Physiology | en_US |
dc.subject.emtree | Signal transduction | en_US |
dc.subject.emtree | Species difference | en_US |
dc.subject.emtree | Vascularization | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Uz_vd_2016.pdf | 3.84 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License